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Integral geometry and Hamiltonian volume minimizing property

of a totally geodesic Lagrangian torus in S2 × S2
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Abstract: We prove that the product of equators S1 × S1 in S2 × S2 is globally volume
minimizing under Hamiltonian deformations.
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1. Introduction and main results.
In 1990, Y.-G. Oh [4] introduced the notion of global
Hamiltonian stability of minimal Lagrangian sub-
manifolds in a Kähler manifold and posed the fol-
lowing conjecture:

Conjecture (Oh). Let M be a Kähler-
Einstein manifold with an involutive anti-
holomorphic isometry τ . Suppose that the fixed
point set of τ

L := Fix τ

is also a compact Einstein manifold with positive
Ricci curvature. Then for any Hamiltonian isotopy
ρ ∈ Ham(M) of M , we have

vol(ρ(L)) ≥ vol(L).

Kleiner and Oh [4] proved that this conjecture
is true for the case RP n ⊂ CP n (see also [1]).

Theorem 1 (Kleiner-Oh). The standard
RP n ⊂ CP n has the least volume among all its
images under Hamiltonian isotopies.

This is the only known example such that the
conjecture has been proved affirmatively.

Important examples of Kähler-Einstein mani-
folds admitting an involutive anti-holomorphic isom-
etry are Hermitian symmetric spaces. Let M be a
Hermitian symmetric space of compact type and τ

be a canonical involution on M . Then

L := Fix τ

is a totally geodesic Lagrangian submanifold in M

(which is called a real form of M). It is interesting
to verify the conjecture for such a pair (M,L).
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In this paper, we shall prove that the same state-
ment as the conjecture is true in the case of (S2 ×
S2 ∼= Q2(C), S1 × S1) although the Lagrangian sur-
face S1 × S1 is flat . More precisely,

Theorem 2. Let L := S1 × S1 be a to-
tally geodesic Lagrangian torus in (S2 × S2 , ω0 ⊕
ω0), where ω0 denotes the standard Kähler form of
S2(1) ∼= CP 1. Then for any Hamiltonian isotopy
ρ ∈ Ham(S2 × S2), we have

vol(ρ(L)) ≥ vol(L).

Our proof is based on the following Lagrangian
intersection theorem ([7], [5] and [6]) and a new
Poincaré formula for Lagrangian surfaces in S2 ×S2.

Theorem 3 (Oh). Let (M,ω) be a compact
symplectic manifold such that there exists an inte-
grable almost complex structure J for which the triple
(M,ω, J) becomes a compact Hermitian symmetric
space. Let L = Fix τ be the fixed point set of an
anti-holomorphic involutive isometry τ on M . As-
sume that the minimal Maslov number of L is greater
than or equal to 2. Then for any Hamiltonian isotopy
ρ ∈ Ham(M) of M such that L and ρ(L) intersect
transversally, the inequality

�(L ∩ ρ(L)) ≥
dim L∑
i=0

rankHi(L,Z/2Z)(1)

holds.
Since the minimal Maslov number of S1 × S1 ⊂

S2 ×S2 is 2, the assumption of the above theorem is
satisfied in our case.

Proposition 4. Let N and L be surfaces of
S2 × S2. Suppose that N is Lagrangian and L is a
product of curves in S2. Then the following inequal-
ity holds:
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4π vol(N) vol(L)(2)

≤
∫

SO(3)×SO(3)

�(N ∩ gL)dµ(g)

≤ 16 vol(N) vol(L).

This formula is interesting in its own right. We
remark the equality condition of the inequality (2).
The first equality of (2) is fulfilled by, for example,
a Lagrangian embedding S2 
 z �→ (z,−z) ∈ S2 ×
S2. The second equality of (2) holds if and only if
the Lagrangian surface N is also a product of closed
curves in S2 .

2. Poincaré formula in Riemannian ho-
mogeneous spaces. Here we shall review the gen-
eralized Poincaré formula in Riemannian homoge-
neous spaces obtained by Howard [2].

Let U be a finite dimensional real vector space
with an inner product, and V and W vector sub-
spaces of dimensions p and q in U , respectively. Take
orthonormal bases v1, . . . , vp and w1, . . . , wq of V and
W , and define

σ(V,W ) = ‖v1 ∧ · · · ∧ vp ∧ w1 ∧ · · · ∧ wq‖,
which is the angle between V and W .

Let G be a Lie group and K a closed subgroup
of G. We assume that G has a left invariant Rieman-
nian metric which is also invariant under elements of
K. This metric induces a G-invariant Riemannian
metric on G/K. For x and y in G/K and vector
subspaces V in Tx(G/K) and W in Ty(G/K), we
define σK(V,W ), the angle between V and W , by

σK(V,W ) =
∫

K

σ((dgx)−1
o V, dk−1

o (dgy)−1
o W )dµK(k)

where gx and gy are elements of G such that gxo = x

and gyo = y. Here we denote by o the origin of G/K.
Theorem 5 (Howard). Let G/K be a Rie-

mannian homogeneous space and assume that G is
unimodular. Let N and L be submanifolds of G/K

with dimN + dimL ≥ dim(G/K). Then∫
G

vol(N ∩ gL)dµG(g)

=
∫

N×L

σK(T⊥
x N, T

⊥
y L)dµ(x, y)

holds.
The linear isotropy representation induces

an action of K on the Grassmannian manifold
Gp(To(G/K)) consisting of all p dimensional sub-
spaces in the tangent space To(G/K) at o in a natural

way. Although σK(T⊥
x N, T

⊥
y L) is defined as an in-

tegral on K, we can consider that it is defined as an
integral on an orbit ofK-action on the Grassmannian
manifold. So σK(·, ·) can be regarded as a function
defined on the product of the orbit spaces of such
K-actions. In the case where G/K is a real space
form, σK(T⊥

x N, T
⊥
y L) is constant since K acts tran-

sitively on the Grassmannian manifold. This implies
that the Poincaré formula is expressed as a constant
times of the product of the volumes of N and L. In
general, such K-actions are not transitive. However,
if we can define an invariant for orbits of this action,
which is called an isotropy invariant, then using this
we can express the Poincaré formula more explicitly.
From this point of view, Tasaki [8] introduced the
multiple Kähler angle, which is the invariant for the
actions of unitary groups.

3. Poincaré formula for Lagrangian sur-
faces in S2×S2. In this section we define isotropy
invariants for surfaces in S2×S2, and give a concrete
expression of the Poincaré formula for its Lagrangian
surfaces.

Let G be the identity component of the isometry
group of S2 ×S2 , that is, G = SO(3)×SO(3). Then
the isotropy group K at o = (p1, p2) in S2×S2 is iso-
morphic to SO(2)×SO(2), and S2 ×S2 is expressed
as a coset space G/K. Assume that G is equipped
with an invariant metric normalized so that G/K be-
comes isometric to the product of unit spheres. We
decompose the tangent space To(G/K) as

To(G/K) = Tp1(S
2) ⊕ Tp2(S

2).

We take orthonormal bases {e1, e2} and {e3, e4} of
Tp1(S

2) and Tp2(S
2), respectively, then a complex

structure on To(G/K) is given by

Je1 = e2, Je2 = −e1 , Je3 = e4, Je4 = −e3.
We consider the oriented 2-plane Grassman-

nian manifold G̃2(To(G/K)). Take an origin Vo :=
span{e1, e2}, and express G̃2(To(G/K)) as a coset
space

G̃2(To(G/K)) = SO(4)/(SO(2) × SO(2)) =: G′/K′.

Now we study the K-action on G̃2(To(G/K)), and
define isotropy invariants. In this case the actions of
K and K′ on G̃2(To(G/K)) are equivalent by Ad :
K → K′. Therefore it suffices to consider the orbit
space of the isotropy action of G̃2(To(G/K)). It is
well known that the orbit space of the isotropy action
of a symmetric space of compact type can be iden-
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tified with a fundamental cell of a maximal torus.
Hence we can define the isotropy invariant by a co-
ordinate of a maximal torus. We denote by g′ and k′

the Lie algebra of G′ and K′, respectively. Then we
have a canonical orthogonal direct sum decomposi-
tion g′ = k′ ⊕ m′ of g′, where

m′ =
{(

O X

−tX O

) ∣∣∣∣ X ∈M2(R)
}
.

We take a maximal abelian subspace a′ of m′ as fol-
lows:

a′ =
{(

O X

−tX O

) ∣∣∣∣ X=
(
θ1 0
0 θ2

)
, θ1, θ2 ∈ R

}
.

Then the set of positive restricted roots of (g′, k′)
with respect to a′ is

∆ = {θ1 + θ2, θ1 − θ2}.
So we have a fundamental cell C of a′:

C =
{
Y =

(
O X

−tX O

) ∣∣∣∣
X =

(
θ1 0
0 θ2

)
,

0 ≤ θ1 + θ2 ≤ π

0 ≤ θ1 − θ2 ≤ π

}
.

Thus the isotropy invariants of this case are given
by θ1 + θ2 and θ1 − θ2. It is easy to see that the
geometric meaning of θ1 − θ2 is the Kähler angle of
2-dimensional subspace ExpY of To(G/K). On the
other hand, there is the other complex structure J ′

which is defined by

J ′e1 = e2, J
′e2 = −e1, J ′e3 = −e4 , J ′e4 = e3

on To(G/K). We can also check that θ1 + θ2 is the
Kähler angle of ExpY with respect to J ′.

We attempt to obtain the explicit expression of
the Poincaré formula applying the isotropy invari-
ants which we defined above to Theorem 5. Let N
and L be surfaces in S2 × S2. We take orthonor-
mal bases {u1, u2} and {v1, v2} of (dgx)−1

o (T⊥
x N) and

(dgy)−1
o (T⊥

y L), respectively. By the definition, we
have

σK(T⊥
x N, T

⊥
y L) =

∫
K

‖u1∧u2∧k−1(v1∧v2)‖dµK(k).

Furthermore, by the Hodge star operator,

σK(T⊥
x N, T

⊥
y L) =

∫
K

|〈u′1∧u′2, k−1(v1∧v2)〉|dµK(k),

where {u′1, u′2} is an orthonormal basis of
(dgx)−1

o (TxN). We put

a =




cosφ sinφ
− sinφ cosφ

1
1


 ,

b =




1
1

cosψ sinψ
− sinψ cosψ




and k = b−1a, then we have

σK(T⊥
x N, T

⊥
y L)(3)

=
∫ 2π

0

∫ 2π

0

|〈a(u′1 ∧ u′2), b(v1 ∧ v2)〉|dφ dψ.

Since without loss of generalities we can assume that
(dgx)−1

o (T⊥
x N) and (dgy)−1

o (T⊥
y L) are in ExpC, we

can take {u′1, u′2} and {v1, v2} as follows:

u′1 = sin θ1e1 + cos θ1e3,(4)

u′2 = sin θ2e2 + cos θ2e4,

v1 = cos τ1e1 − sin τ1e3,(5)

v2 = cos τ2e2 − sin τ2e4,

with isotropy invariants θ1 ± θ2 and τ1 ± τ2. So we
can express the integration of (3) using θ1, θ2 , τ1 and
τ2. It is complicated to express this general form, so
we shall show for a special case which is needed to
prove our main theorem.

Theorem 6. Let N and L be Lagrangian sur-
faces in S2 × S2. We assume that L is a product of
curves in S2. Then we have∫

G

�(N ∩ gL)dµ(g)

= 4 vol(L)
∫

N

length(Ellip(sin2 θx, cos2 θx))dµ(x),

where 2θx−π/2 is the Kähler angle of T⊥
x N with re-

spect to J ′ and Ellip(α, β) denotes an ellipse defined
by

x2

α2
+
y2

β2
= 1.

Proof. Since N is a Lagrangian surface, θ1 −
θ2 = π/2 in (4), so we put

θ1 = θ, θ2 = θ − π

2
.

On the other hand, L is Lagrangian with respect to
both J and J ′, that is, τ1 = π/2 and τ2 = 0 in (5).
Therefore from (3) we have
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σK(T⊥
x N, T

⊥
y L) =

∫ 2π

0

∫ 2π

0

| cosφ cosψ cos2 θ

+ sinφ sinψ sin2 |θ|dφ dψ.
In [3], Kang calculated this type of integrals directly
and expressed it by elliptic functions. But we give
here a geometrical simple computation. Now we take
a subspace which is given by

V = span{e2 ∧ e3, e2 ∧ e4}
in
∧2 (

To(G/K)
)
. Then b(v1 ∧ v2) moves on the

unit circle in V with the parameter ψ. Let P de-
note the orthogonal projection from

∧2 (To(G/K)
)

to V . From (3) we have

σK(T⊥
x N, T

⊥
y L)

=
∫ 2π

0

∫ 2π

0

|〈P (a(u′1 ∧ u′2)), b(v1 ∧ v2)〉|dφ dψ.

Here P (a(u′1 ∧ u′2)) moves with parameter φ on the
ellipse which defined by

x2

cos4 θ
+

y2

sin4 θ
= 1

in V . Hence we put

rφ =
√

cos2 φ cos4 θ + sin2 φ sin4 θ,

then we have

σK(T⊥
x N, T

⊥
y L) =

∫ 2π

0

∫ 2π

0

|rφ cosψ|dψ dφ

=
∫ 2π

0

rφdφ

∫ 2π

0

| cosψ|dψ

= 4 length(Ellip(sin2 θ, cos2 θ)).

Thus we complete the proof of Theorem 6 from
Theorem 5.

Proposition 4 is immediately obtained from
Theorem 6.

4. Proof of the main theorem.
Proof of Theorem 2. Let L := S1 × S1 be a

totally geodesic Lagrangian torus in S2 × S2 . Let ρ
be a Hamiltonian isotopy of S2 ×S2 . By inequalities
(1) and (2), we have

16 vol(ρ(L)) vol(L)

≥
∫

SO(3)×SO(3)

�(ρ(L) ∩ gL)dµ(g)

=
∫

SO(3)×SO(3)

�(g−1 ◦ ρ(L) ∩ L)dµ(g)

≥
∫

SO(3)×SO(3)

2∑
i=0

rankHi(L,Z/2Z)dµ(g)

= 4 vol(SO(3) × SO(3)).

Since vol(SO(3)) = 8π2 and vol(L) = 4π2, we have

vol(ρ(L)) ≥ 4π2 = vol(L).
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