On a Lehmer problem concerning Euler's totient function

By Aleksander Grytczuk*) and Marek Wójtowicz**)
(Communicated by Heisuke Hironaka, m. J. a., Oct. 14, 2003)

Abstract

Let M be a positive integer with $M>4$, and let φ denote Euler's totient function. If a positive integer n satisfies the Diophantine equation (*) M $M(n)=n-1$, then the number of prime factors of n is much bigger than M. Moreover, the set of all squarefree integers which do not fulfil $(*)$ contains "nice" subsets.

Key words: Lehmer problem; Euler totient function.

Let φ denote Euler's totient function, and let M, n denote positive integers with $M \geq 2$. The present paper concerns the equation

$$
\begin{equation*}
M \varphi(n)=n-1 \tag{*}
\end{equation*}
$$

considered in 1932 by Lehmer [5]. Throughout this paper, for fixed M the symbol \mathcal{L}_{M} stands for the (possibly empty) set of all composite solutions of ($*$), and we put $\mathcal{L}=\bigcup_{M \geq 2} \mathcal{L}_{M}$. The letter n will always denote an element of \mathcal{L}. By $\mathcal{Q}=\left\{Q_{1}, Q_{2}, \ldots\right\}$ we denote the set of all primes with $Q_{i}<Q_{i+1}$, where $i=1,2, \ldots$.

Lehmer asked whether the set \mathcal{L} is nonempty, and he proved that if $\mathcal{L} \neq \emptyset$ then every $n \in \mathcal{L}$ must be odd, squarefree, i.e.,

$$
\begin{equation*}
n=p_{1} p_{2} \cdot \ldots \cdot p_{r} \tag{1}
\end{equation*}
$$

with $3 \leq p_{1}<p_{2}<\cdots<p_{r}, p_{1}, \ldots, p_{r}$ primes, and the number $\omega(n):=r$ is at least 7 .

In this paper we assume that $\mathcal{L} \neq \emptyset$, and then we show that $\omega(n)$, for $n \in \mathcal{L}_{M}$, is much bigger than M, and that the set $\mathcal{L}^{\prime}=\mathbf{S F} \backslash \mathcal{L}$, where $\mathbf{S F}$ denotes the set of all squarefree odd integers, contains "very regular" subsets (Theorems 1 and 2 below, respectively).

Since 1970, lower bounds for $\omega(n)$ have been improved by a number of authors. In 1970 Lieuwens [6] obtained $\omega(n) \geq 11$, what was extended in 1977 by Kishore [4] to

$$
\begin{equation*}
\omega(n) \geq 13 \tag{2}
\end{equation*}
$$

and in 1980 (by the use of a computer) by Cohen

[^0]and Hagis [1] to $\omega(n) \geq 14$. The most amasing case is $3 \mid n$: in 1988 Hagis [3] presented a computer-aided proof that then n must be huge, i.e.
\[

$$
\begin{equation*}
\omega(n) \geq 298848 \text { and } n>10^{1937042} \tag{3}
\end{equation*}
$$

\]

strengthening earlier results of Lieuwens [6] and Wall [12] that
$\left(3^{\prime}\right) \quad \omega(n) \geq 213$ and $n>5.5 \times 10^{570}$,
and Subbarao and Prasad [11]:
($3^{\prime \prime}$)
$\omega(n) \geq 1850$ (partially by the use of a computer).
In the same paper Hagis showed that n must be large enough, in general:

$$
\begin{align*}
& \omega(n) \geq 1991 \text { and } n>10^{8171} \tag{4}\\
& \quad \text { for } n \in \mathcal{L}_{M} \text { with } M \geq 3
\end{align*}
$$

One should mension here that in 1985 Prasad and Rangamma proved in elementary way that for $3 \mid n$ with $n \in \mathcal{L}_{M}$ and $M>4$ one has $\omega(n) \geq 5334$ ([8], Theorem 3).

As far as general results on bounds for n are concerned, in 1977 Pomerance [7] showed that

$$
\begin{equation*}
n<r^{2^{r}}, \text { where } r=\omega(n) \tag{5}
\end{equation*}
$$

what was improved in 1985 by Subbarao and Prasad [11] to $n<(r-1)^{2^{(r-1)}}$, and in 1980 Cohen and Hagis [1] obtained

$$
\begin{equation*}
n>10^{20} \tag{6}
\end{equation*}
$$

(by (4), this result may be essential only for $M=2$).
All the above-presented results concerning lower bounds for $\omega(n)$ does not depend explicitly on M. We show below that such a dependence does exist and that for large M 's the value of $\omega(n)$, with $n \in$
\mathcal{L}_{M}, rapidly tends to infinity as $M \rightarrow \infty$ exceeding (even for small M 's) the gigantic bounds (3) and (4) obtained by Hagis.

Theorem 1. Let $M \geq 4$, and let $n \in \mathcal{L}_{M}$ be of the form (1).
(a) If $p_{1}=3$ then $\omega(n) \geq 3049^{M / 4}-1509$.
(b) If $p_{1}>3$ then $\omega(n) \geq 143^{M / 4}-1$.

Thus, if $p_{1}=3$ and $M \geq 7$, we have that $\omega(n) \geq$ 10^{6} and, by (7) below, $n>10^{6 \cdot 10^{6}}$ (compare with the bounds in (3)). If $p_{1}>3$ and $M \geq 7$, then $\omega(n) \geq$ 5912 and, by (7) below, $n>10^{2 \cdot 10^{5}}$ (compare with the bounds in (4)).

The corollary below is an immediate consequence of Theorem 1 and Robin's inequality (see [9], Théorème 6) that for every positive integer n we have

$$
\begin{equation*}
n>\left(\frac{r \log r}{3}\right)^{r} \tag{7}
\end{equation*}
$$

where $r=\omega(n)$. Note that for $M \geq 4$ we have the following (rough, but more informative) bounds: $3049^{M / 4}-1509>6^{M}$, and $143^{M / 4}-1>3^{M}$.

Corollary. Let $M \geq 4$, and let $n \in \mathcal{L}_{M}$ be of the form (1).
(a) If $p_{1}=3$ then $n>\left(c M 6^{M}\right)^{6^{M}}$, where $c=$ $0.597 \cdots=\log 6 / 3$.
(b) If $p_{1}>3$ then $n>\left(d M 3^{M}\right)^{3^{M}}$, where $d=$ $0.366 \ldots=\log 3 / 3$.
The next theorem deals with the structure of the set \mathcal{L}^{\prime} defined above and it complements the result of Pomerance [7] that the number $\mathcal{L}(x)$ of all $n \in \mathcal{L}$ not exceeding x is $O\left(x^{1 / 2}(\log x)^{3 / 4}\right)$.

Let $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots\right\}$, where $P_{i}<P_{i+1}$ for all $i \geq 1$, denote the set of all odd primes.

Theorem 2. For every integer $k \geq 2$ there exists an infinite subset $\mathcal{P}(k)$ of \mathcal{P} such that:
(i) for every distinct primes $p_{1}, p_{2}, \ldots, p_{k} \in \mathcal{P}(k)$ the squarefree number $n=p_{1} p_{2} \cdots p_{k}$ does not fulfil equation $(*)$ (i.e., $n \in \mathcal{L}^{\prime}$);
(ii) $\mathcal{P}(k)$ is maximal with respect to inclusion.
(Of course, since $\omega(n) \geq 14$ in general, we have that $\mathcal{P}(k)=\mathcal{P}$ for $k \leq 13$.)

The proof of Theorem 1. From (*) we obtain that if $n=p_{1} p_{2} \cdots p_{r} \in \mathcal{L}_{M}$, then

$$
\begin{equation*}
\log M<\sum_{i=1}^{r} \log \left(1+\frac{1}{p_{i}-1}\right) \tag{8}
\end{equation*}
$$

where $r=\omega(n)$. We shall apply below inequality (8) to obtain the bounds for $\omega(n)$.

Part (a). From (*) it follows that $p_{i} \equiv 5$ $(\bmod 6)$, for $i \geq 2$. We define the set $\mathcal{A}:=\{3\} \cup$ $\{p \in \mathcal{P}: p \equiv 5(\bmod 6)\}=\left\{a_{1}, a_{2}, \ldots\right\}$, where $a_{j}<$ a_{j+1} for $j=1,2, \ldots$ Put

$$
\alpha(k)=\sum_{i=1}^{k} \log \left(1+\frac{1}{a_{i}-1}\right)
$$

where $k \geq 14$. From (8) we obtain

$$
\begin{equation*}
\log M<\alpha(r) \tag{9}
\end{equation*}
$$

Let k_{0} be the least integer k with $\log 4 \leq \alpha(k)$ (i.e., $\alpha\left(k_{0}\right) \geq \log 4$ and $\alpha\left(k_{0}-1\right)<\log 4$). Since $\alpha(1539)=1.38625 \cdots<\log 4=1.3862943 \cdots<$ $1.3862948 \cdots=\alpha(1540)$, we obtain that $k_{0}=1540$. Now from (9) it follows that for $n \in \mathcal{L}_{M}$ with $M \geq 4$ we have $\omega(n)=r \geq 1540$.

Since $a_{1540}=Q_{3050}, a_{i} \geq Q_{1510+i}$ for $i \geq 1540$, from (9) we obtain

$$
\begin{aligned}
\log M & <\alpha(1539)+\sum_{i=1540}^{r} \log \left(1+\frac{1}{a_{i}-1}\right) \\
& <\log 4+\sum_{i=1540}^{r} \frac{1}{Q_{1510+i}-1} \\
& <\log 4+\int_{1539}^{r} \frac{\mathrm{~d} x}{(1510+x) \log (1510+x)}
\end{aligned}
$$

as

$$
\begin{equation*}
Q_{m}>m \log m+1, \quad \text { for } m>20 \tag{10}
\end{equation*}
$$

(this follows from Rosser's inequality $Q_{m} \geq$ $m(\log m+\log (\log m)-1.0072629)$ for $m \geq 2$; see [10], cf. [9], p. 368). Hence $\log M<\log 4+\log (\log (r+$ 1510) $)-\log (\log (3049))$, which follows that $\omega(n)=$ $r \geq(3049)^{M / 4}-1509$ indeed.

Part (b). We have in (8) that $p_{1} \geq 5=Q_{3}$. Put

$$
\beta(k)=\sum_{i=1}^{k} \log \left(1+\frac{1}{Q_{i+2}-1}\right)
$$

where $k \geq 14$. Now from (8) we obtain

$$
\log M<\beta(r)
$$

Since $\beta(141)=1.3851 \cdots<\log 4<1.3863 \cdots=$ $\beta(142)$, from (9^{\prime}) it follows that for $n \in \mathcal{L}_{M}$ with $M \geq 4$ we have $\omega(n)=r \geq 142$, and hence (by (10) again)

$$
\begin{aligned}
\log M & <\beta(141)+\sum_{142}^{r} \log \left(1+\frac{1}{Q_{i+2}-1}\right) \\
& <\log 4+\sum_{142}^{r} \frac{1}{Q_{i+2}-1} \\
& <\log 4+\log (\log (r+2))-\log (\log (143))
\end{aligned}
$$

i.e., $\omega(n)=r \geq(143)^{M / 4}-1$, as claimed.

The proof of Theorem 2. For X a nonempty subset of the set \mathbf{N} of all positive integers and $k \in$ \mathbf{N} the symbol $[X]^{k}$ denotes the set of all k-element subsets of \mathbf{N}.

Fix an integer $k \geq 2$, and consider the function $f:[\mathbf{N}]^{k} \rightarrow\{0,1\}$ of the form: $f\left(\left\{i_{1}, \ldots, i_{k}\right\}\right)=$ 0 iff the number $n:=P_{i_{1}} P_{i_{2}} \cdots P_{i_{k}}$ fulfils equation (*). By the Ramsey theorem (see [2]), there exists an infinite subset $\mathbf{N}(k)$ of \mathbf{N} such that $f\left([\mathbf{N}(k)]^{k}\right)=$ $\{0\}$ or $f\left([\mathbf{N}(k)]^{k}\right)=\{1\}$; equivalently, there exists an infinite subset $\mathcal{P}(k)$ of \mathcal{P} such that the following alternative holds:
$(*)_{1}$

$$
P_{i_{1}} P_{i_{2}} \cdots P_{i_{k}} \in \mathcal{L}, \quad \text { or }
$$

$(*)_{2}$

$$
P_{i_{1}} P_{i_{2}} \cdots P_{i_{k}} \notin \mathcal{L}
$$

for all pairwise distinct $P_{i_{1}}, \ldots, P_{i_{k}} \in \mathcal{P}(k)$. From (5) it follows that for every k the number $\#\{n \in \mathcal{P}$: $\omega(n) \leq k\}$ is finite, and thus the case $(*)_{1}$ is impossible. Hence case $(*)_{2}$ takes place, which implies that the set $\mathcal{P}(k)$ fulfils condition (i) of Theorem 2. The existence of a maximal (with respect to inclusion) set $\mathcal{P}(k)$ follows easily from Zorn's Lemma (applied in the proof of the Ramsey theorem).

References

[1] Cohen, G. L., and Hagis, P. Jr.: On the number of prime factors of n if $\varphi(n) \mid n-1$. Nieuw Arch. Wisk. (3), 28, 177-185 (1980).
[2] Graham, R. L., Rothschild, B. L., and Spencer, J. H.: Ramsey Theory. John Wiley \& Sons, Inc., New York (1980).
[3] Hagis, P. Jr.: On the equation $M \cdot \varphi(n)=n-1$. Nieuw Arch. Wisk. (4), 6, 225-261 (1988).
[4] Kishore, M.: On the number of distinct prime factors of n for which $\varphi(n) \mid n-1$. Nieuw Arch. Wisk. (3), 25, 48-53 (1997).
[5] Lehmer, D. H.: On Euler's totient function. Bull. Amer. Math. Soc., 38, 745-751 (1932).
[6] Lieuwens, E.: Do there exist composite M for which $k \varphi(M)=M-1$ holds? Nieuw Arch. Wisk. (3), 18, 165-169 (1970).
[7] Pomerance, C.: On composite n for which $\varphi(n) \mid n-$ 1. II. Pacific J. Math., 69, 177-186 (1977).
[8] Siva Rama Prasad, V., and Rangamma, M.: On composite n satisfying a problem of Lehmer. Indian J. Pure Appl. Math., 16, 1244-1248 (1985).
[9] Robin, G.: Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de n. Acta Arith., 42, 367-389 (1983).
[10] Rosser, J. B.: The n-th prime is greater than $n \log n$. Proc. London Math. Soc., 45, 21-44 (1938).
[11] Subbarao, M. V., and Siva Rama Prasad, V.: Some analogues of a Lehmer problem on the totient function. Rocky Mountain J. Math., 15, 609-620 (1985).
[12] Wall, D. W.: Conditions for $\varphi(N)$ to properly divide $N-1$. A Collection of Manuscripts Related to the Fibonacci Sequence (eds. Hoggatt, V. E., and Bicknell-Johnson, M.), 18th Anniv. Vol., Fibonacci Assoc., Santa Clara, pp. 205-208 (1980).

[^0]: 2000 Mathematics Subject Classification. 11A25.
 *) Institute of Mathematics, University of Zielona Góra, Podgórna 50, 65-246 Zielona Góra, Poland.
 **) Instytut Matematyki, Akademia Bydgoska, Pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland.

