Duplication formulas in triple trigonometry

By Nobushige Kurokawa ${ }^{*)}$ and Masato Wakayama**)

(Communicated by Heisuke Hironaka, m. J. a., Oct. 14, 2003)

Abstract

We study the duplication formulas of triple sine and cosine functions from various expressions point of view.

Key words: Riemann zeta function; special values; multiple trigonometric function; duplication formula.

1. Introduction. Triple trigonometric functions

$$
\mathcal{S}_{3}(x)=e^{\frac{x^{2}}{2}} \prod_{n=1}^{\infty}\left\{\left(1-\frac{x^{2}}{n^{2}}\right)^{n^{2}} e^{x^{2}}\right\}
$$

and

$$
\mathcal{C}_{3}(x)=\prod_{n=1}^{\infty}\left\{\left(1-\frac{x^{2}}{\left(n-\frac{1}{2}\right)^{2}}\right)^{\left(n-\frac{1}{2}\right)^{2}} e^{x^{2}}\right\}
$$

are interesting special functions. For example, the special value $\mathcal{S}_{3}(1 / 2)$ gives the expression

$$
\zeta(3)=\frac{8 \pi^{2}}{7} \log \left(\mathcal{S}_{3}\left(\frac{1}{2}\right)^{-1} 2^{\frac{1}{4}}\right)
$$

to the famous mysterious zeta-value

$$
\zeta(3)=\sum_{n=1}^{\infty} \frac{1}{n^{3}}
$$

as proved in [KW1].
We therefore want to know the arithmetic nature of special values of $\mathcal{S}_{3}(x)$ and $\mathcal{C}_{3}(x)$. Since these trigonometric functions are generalizations of the usual trigonometric functions

$$
\mathcal{S}_{1}(x)=2 \pi x \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2}}\right)=2 \sin (\pi x)
$$

and

$$
\mathcal{C}_{1}(x)=2 \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{\left(n-\frac{1}{2}\right)^{2}}\right)=2 \cos (\pi x)
$$

it would be natural to study the analogue of the following well-known duplication formulas:

[^0](A) $\mathcal{S}_{1}(2 x)=\mathcal{S}_{1}(x) \mathcal{C}_{1}(x)$,
(B) $\mathcal{S}_{1}(2 x)=\mathcal{S}_{1}(x) \mathcal{S}_{1}\left(x+\frac{1}{2}\right)$,
(C) $\mathcal{S}_{1}(2 x)=\Phi\left(\mathcal{S}_{1}(x)\right)$ for $\Phi(u)= \pm u \sqrt{4-u^{2}}$,
$\mathcal{C}_{1}(2 x)=\Psi\left(\mathcal{C}_{1}(x)\right)$ for $\Psi(u)=u^{2}-2$.
Our first results are generalizations of (A) and (B) which we call multiplicative duplication formulas.

Theorem 1.1. The multiplicative duplication formulas of $\mathcal{S}_{3}(x)$ hold:
(A) $\mathcal{S}_{3}(2 x)=\mathcal{S}_{3}(x)^{4} \mathcal{C}_{3}(x)^{4}$,
(B) $\mathcal{S}_{3}(2 x)=\exp \left(\frac{7 \zeta(3)}{2 \pi^{2}}\right) \mathcal{S}_{3}(x)^{4} \mathcal{S}_{3}\left(x+\frac{1}{2}\right)^{4}$

$$
\times \mathcal{S}_{2}\left(x+\frac{1}{2}\right)^{-4} \mathcal{S}_{1}\left(x+\frac{1}{2}\right) .
$$

Also the analogue of the duplication formulas of type (C) we seek are of the form respectively given by

$$
\mathcal{S}_{3}(2 x)=\Phi\left(\mathcal{S}_{3}(x)\right)
$$

and

$$
\mathcal{C}_{3}(2 x)=\Psi\left(\mathcal{C}_{3}(x)\right)
$$

where $\Phi(u)$ and $\Psi(u)$ belong in $\overline{\mathbf{Q}}[[u]]$.
If we have such formulas, from the fact $\mathcal{S}_{3}(1)=$ 0 we have $\Phi\left(\mathcal{S}_{3}(1 / 2)\right)=0$, which might imply the algebraicity of the value

$$
\mathcal{S}_{3}\left(\frac{1}{2}\right)=2^{\frac{1}{4}} \exp \left(-\frac{7 \zeta(3)}{8 \pi^{2}}\right)
$$

Moreover, from the fact $\Psi\left(\mathcal{C}_{3}(1 / 4)\right)=\mathcal{C}_{3}(1 / 2)=0$ we would have the algebraicity of

$$
\mathcal{C}_{3}\left(\frac{1}{4}\right)=2^{\frac{1}{32}} \exp \left(\frac{21 \zeta(3)}{64 \pi^{2}}+\frac{L\left(2, \chi_{-4}\right)}{4 \pi}\right)
$$

where

$$
L\left(s, \chi_{-4}\right)=\sum_{n=1}^{\infty} \frac{\chi_{-4}(n)}{n^{s}}=\sum_{n=1}^{\infty} \frac{(-1)^{\frac{n-1}{2}}}{n^{s}}
$$

is the Dirichlet L-function for the non-trivial Dirichlet character χ_{-4} modulo 4 .

The following two theorems are results in the direction of (C).

Theorem 1.2. There exists a power series

$$
\Phi(u)=-16 u^{4}+8 u^{6}+\cdots
$$

belonging to $\mathbf{R}[[u]]$ which satisfies

$$
\mathcal{S}_{3}(2 x)=\Phi\left(\mathcal{S}_{3}(x)\right)
$$

around $x=1$.
Theorem 1.3. There exists a power series

$$
\Psi(u)=-16+32 \exp \left(-\frac{7 \zeta(3)}{\pi^{2}}\right) u^{2}+\cdots
$$

belonging to $\mathbf{R}[[u]]$ which satisfies

$$
\mathcal{C}_{3}(2 x)^{4}=\Psi\left(\mathcal{C}_{3}(x)^{4}\right)
$$

around $x=1 / 2$.
2. Multiple trigonometric functions.

We recall here basic multiple trigonometry from [K1, KKo, KOW]. Multiple trigonometric functions of degree $r \geq 2$ are consisting of the multiple sine function

$$
\mathcal{S}_{r}(x)=e^{\frac{x^{r-1}}{r-1}} \prod_{n=1}^{\infty}\left\{P_{r}\left(\frac{x}{n}\right) P_{r}\left(-\frac{x}{n}\right)^{(-1)^{r-1}}\right\}^{n^{r-1}}
$$

and the multiple cosine function

$$
\begin{aligned}
& \mathcal{C}_{r}(x) \\
& =\prod_{n=1}^{\infty}\left\{P_{r}\left(\frac{x}{n-\frac{1}{2}}\right) P_{r}\left(-\frac{x}{n-\frac{1}{2}}\right)^{(-1)^{r-1}}\right\}^{\left(n-\frac{1}{2}\right)^{r-1}}
\end{aligned}
$$

where

$$
P_{r}(u)=(1-u) \exp \left(u+\frac{u^{2}}{2}+\cdots+\frac{u^{r}}{r}\right)
$$

Besides the triple sine and cosine functions described in the beginning, for example, these formulas give

$$
\begin{aligned}
& \mathcal{S}_{2}(x)=e^{x} \prod_{n=1}^{\infty}\left\{\left(\frac{1-\frac{x}{n}}{1+\frac{x}{n}}\right)^{n} e^{2 x}\right\} \\
& \mathcal{C}_{2}(x)=\prod_{n=1}^{\infty}\left\{\left(\frac{1-\frac{x}{n-\frac{1}{2}}}{1+\frac{x}{n-\frac{1}{2}}}\right)^{n-\frac{1}{2}} e^{2 x}\right\} .
\end{aligned}
$$

These infinite product expressions are generalizations of

$$
\mathcal{S}_{1}(x)=2 \pi x \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2}}\right)
$$

$$
=2 \pi x \prod_{n=1}^{\infty} P_{1}\left(\frac{x}{n}\right) P_{1}\left(-\frac{x}{n}\right)
$$

and

$$
\begin{aligned}
\mathcal{C}_{1}(x) & =2 \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{\left(n-\frac{1}{2}\right)^{2}}\right) \\
& =2 \prod_{n=1}^{\infty} P_{1}\left(\frac{x}{n-\frac{1}{2}}\right) P_{1}\left(-\frac{x}{n-\frac{1}{2}}\right) .
\end{aligned}
$$

We notice that the multiple sine function $\mathcal{S}_{r}(x)$ is a meromorphic function of order r, which is entire when r is odd. The multiple cosine function $\mathcal{C}_{r}(x)$ is a 2^{r-1}-multi-valued function, and
$\tilde{\mathcal{C}}_{r}(x)=\mathcal{C}_{r}(x)^{2^{r-1}}$
$=\prod_{n=1}^{\infty}\left\{P_{r}\left(\frac{x}{n-\frac{1}{2}}\right) P_{r}\left(-\frac{x}{n-\frac{1}{2}}\right)^{(-1)^{r-1}}\right\}^{(2 n-1)^{r-1}}$
defines a single-valued meromorphic function of order r. In this paper we use the differential equations

$$
\mathcal{S}_{r}^{\prime}(x)=\mathcal{S}_{r}(x) \pi x^{r-1} \cot (\pi x)
$$

and

$$
\tilde{\mathcal{C}}_{r}^{\prime}(x)=-2^{r-1} \tilde{\mathcal{C}}_{r}(x) \pi x^{r-1} \tan (\pi x)
$$

derived from the product expressions via logarithmic differentiations.

These multiple trigonometric functions were initially constructed and investigated in [K1, K2, K3]. We refer also to Manin [M] as an excellent survey. Some details of our study have been published in [KKo, KW1, KOW] among others.

We are especially interested in the nature of the special values $\mathcal{S}_{r}(n / 2)$ and $\mathcal{C}_{r}(n / 2)$ for integers n. These values are intimately related to the special values of zeta functions as shown in [K1, KW1, KOW, KKo] (see also [KW4, KW5]), and furthermore these give extremal values of the functions $\mathcal{S}_{r}(x)$ and $\mathcal{C}_{r}(x)$ respectively as we determined in [KW3] when $r=2,3$. (See also [KW2] for its appearance in the functional equation of the higher Selberg zeta function). We know the algebraicity of $\mathcal{S}_{1}(1 / 2)=2$ and $\mathcal{S}_{2}(1 / 2)=\sqrt{2}$, but we have no results concerning the algebraicity of $\mathcal{S}_{3}(1 / 2)$ up to now. Here we note that the fact $\mathcal{S}_{2}(1 / 2)=\sqrt{2}$ is not obvious and it is actually equivalent to Euler's famous integration ([E])

$$
\int_{0}^{\frac{\pi}{2}} \log (\sin \phi) d \phi=-\frac{\pi}{2} \log 2
$$

as shown in [KW3].

3. Multiplicative duplication formulas.

We show Theorem 1.1. Since the duplication formula (A) can be proved for any degree $r(r \geq 2)$ as

$$
\mathcal{S}_{r}(2 x)=\mathcal{S}_{r}(x)^{2^{r-1}} \mathcal{C}_{r}(x)^{2^{r-1}}
$$

in a unified way, we show the theorem in this generalized form. In fact, observing the expressions

$$
\begin{aligned}
& \mathcal{S}_{r}(2 x) \\
& =e^{\frac{(2 x)^{r-1}}{r-1}} \prod_{m=1}^{\infty}\left\{P_{r}\left(\frac{2 x}{m}\right) P_{r}\left(-\frac{2 x}{m}\right)^{(-1)^{r-1}}\right\}^{m^{r-1}}
\end{aligned}
$$

and
$\mathcal{S}_{r}(x)^{2^{r-1}}$
$=e^{\frac{\left(2 x x^{r-1}\right.}{r-1}} \prod_{m=1}^{\infty}\left\{P_{r}\left(\frac{x}{m}\right) P_{r}\left(-\frac{x}{m}\right)^{(-1)^{r-1}}\right\}^{(2 m)^{r-1}}$
$=e^{\frac{(2 x)^{r-1}}{r-1}} \prod_{m=1}^{\infty}\left\{\operatorname{Pr}\left(\frac{2 x}{2 m}\right) \operatorname{Pr}\left(-\frac{2 x}{2 m}\right)^{(-1)^{r-1}}\right\}^{(2 m)^{r-1}}$,
we see that

$$
\begin{aligned}
& \frac{\mathcal{S}_{r}(2 x)}{\mathcal{S}_{r}(x)^{2^{r-1}}} \\
&=\prod_{m=1, m: \text { odd }}^{\infty}\left\{P_{r}\left(\frac{2 x}{m}\right) P_{r}\left(-\frac{2 x}{m}\right)^{(-1)^{r-1}}\right\}^{m^{r-1}} \\
&= \prod_{n=1}^{\infty}\left\{P_{r}\left(\frac{x}{n-\frac{1}{2}}\right) P_{r}\left(-\frac{x}{n-\frac{1}{2}}\right)^{(-1)^{r-1}}\right\}^{(2 n-1)^{r-1}} \\
&= \mathcal{C}_{r}(x)^{2^{r-1}}
\end{aligned}
$$

This shows (A). We notice that this property is valid for $r=1$ also, since $\mathcal{S}_{1}(2 x)=\mathcal{S}_{1}(x) \mathcal{C}_{1}(x)$.

Next, we prove (B). We show that
(i) both sides are 1 at $x=0$,
(ii) logarithmic derivatives of both sides are $8 \pi x^{2} \cot (2 \pi x)$.
If we check these facts we can conclude the equality (B). Concerning (i), we see that the left hand side is $\mathcal{S}_{3}(0)=1$ and the right hand side is in fact

$$
\exp \left(\frac{7 \zeta(3)}{2 \pi^{2}}\right) \mathcal{S}_{3}(0)^{4} \mathcal{S}_{3}\left(\frac{1}{2}\right)^{4} \mathcal{S}_{2}\left(\frac{1}{2}\right)^{-4} \mathcal{S}_{1}\left(\frac{1}{2}\right)=1
$$

which follows from

$$
\begin{gathered}
\mathcal{S}_{3}\left(\frac{1}{2}\right)=2^{\frac{1}{4}} \exp \left(-\frac{7 \zeta(3)}{8 \pi^{2}}\right) \\
\mathcal{S}_{2}\left(\frac{1}{2}\right)=\sqrt{2}
\end{gathered}
$$

and

$$
\mathcal{S}_{1}\left(\frac{1}{2}\right)=2
$$

To see (ii), we recall that

$$
\frac{\mathcal{S}_{r}^{\prime}}{\mathcal{S}_{r}}(x)=\pi x^{r-1} \cot (\pi x)
$$

for $r \geq 1$ as proved in [KKo]. Hence the logarithmic derivative of the right hand side is

$$
\begin{aligned}
& 4 \frac{\mathcal{S}_{3}^{\prime}}{\mathcal{S}_{3}}(x)+4 \frac{\mathcal{S}_{3}^{\prime}}{\mathcal{S}_{3}}\left(x+\frac{1}{2}\right)-4 \frac{\mathcal{S}_{2}^{\prime}}{\mathcal{S}_{2}}\left(x+\frac{1}{2}\right)+\frac{\mathcal{S}_{1}^{\prime}}{\mathcal{S}_{1}}\left(x+\frac{1}{2}\right) \\
& =4 \pi x^{2} \cot (\pi x)+4 \pi\left(x+\frac{1}{2}\right)^{2} \cot \pi\left(x+\frac{1}{2}\right) \\
& \quad-4 \pi\left(x+\frac{1}{2}\right) \cot \pi\left(x+\frac{1}{2}\right)+\pi \cot \pi\left(x+\frac{1}{2}\right) \\
& =4 \pi x^{2}(\cot (\pi x)-\tan (\pi x)) \\
& =8 \pi x^{2} \cot (2 \pi x)
\end{aligned}
$$

which is equal to the logarithmic derivative of the left hand side. This proves the theorem.
4. Special values. We calculate several special values needed in the proofs of Theorem 1.2 and Theorem 1.3.

Proposition 4.1. We have
(1) $\mathcal{S}_{3}^{\prime}(1)=-2 \pi$.
(2) $\tilde{\mathcal{C}}_{3}^{\prime}\left(\frac{1}{2}\right)=-2 \pi \exp \left(\frac{7 \zeta(3)}{2 \pi^{2}}\right)$.
(3) $\tilde{\mathcal{C}}_{3}(1)=-16$.
(4) $\tilde{\mathcal{C}}_{3}^{\prime}(1)=0$.
(5) $\tilde{\mathcal{C}}_{3}^{\prime \prime}(1)=64 \pi^{2}$.

Proof. (1) Using the differential equation

$$
\mathcal{S}_{3}^{\prime}(x+1)=\mathcal{S}_{3}(x+1) \pi(x+1)^{2} \cot (\pi x)
$$

and the periodicity proved in [KKo]

$$
\mathcal{S}_{3}(x+1)=-\mathcal{S}_{3}(x) \mathcal{S}_{2}(x)^{2} \mathcal{S}_{1}(x),
$$

we obtain

$$
\mathcal{S}_{3}^{\prime}(x+1)=-\pi \mathcal{S}_{3}(x) \mathcal{S}_{2}(x)^{2}(x+1)^{2} \frac{\mathcal{S}_{1}(x)}{\tan (\pi x)}
$$

Hence

$$
\mathcal{S}_{3}^{\prime}(1)=\lim _{x \rightarrow 0} \mathcal{S}_{3}^{\prime}(x+1)=-\pi \mathcal{S}_{3}(0) \mathcal{S}_{2}(0)^{2} \cdot 2=-2 \pi
$$

since $\mathcal{S}_{3}(0)=\mathcal{S}_{2}(0)=1$.
(2) From the duplication formula $\tilde{\mathcal{C}}_{3}(x)=$ $\left(\mathcal{S}_{3}(2 x)\right) /\left(\mathcal{S}_{3}(x)^{4}\right)$ of Theorem 1.1, we calculate

$$
\tilde{\mathcal{C}}_{3}^{\prime}\left(\frac{1}{2}\right)=\lim _{x \rightarrow \frac{1}{2}} \frac{\tilde{\mathcal{C}}_{3}(x)}{x-\frac{1}{2}}=\lim _{x \rightarrow \frac{1}{2}} \frac{\mathcal{S}_{3}(2 x)}{x-\frac{1}{2}} \cdot \mathcal{S}_{3}(x)^{-4}
$$

$$
\begin{aligned}
& =\left.2 \mathcal{S}_{3}^{\prime}(2 x)\right|_{x=\frac{1}{2}} \cdot \mathcal{S}_{3}\left(\frac{1}{2}\right)^{-4} \\
& =2 \mathcal{S}_{3}^{\prime}(1) \mathcal{S}_{3}\left(\frac{1}{2}\right)^{-4} \\
& =2 \cdot(-2 \pi) \cdot\left\{2^{\frac{1}{4}} \exp \left(-\frac{7 \zeta(3)}{8 \pi^{2}}\right)\right\}^{-4} \\
& =-2 \pi \exp \left(\frac{7 \zeta(3)}{2 \pi^{2}}\right)
\end{aligned}
$$

(3) We first show the periodicity of $\tilde{\mathcal{C}}_{3}(x)$:

$$
\tilde{\mathcal{C}}_{3}(x+1)=-\tilde{\mathcal{C}}_{3}(x) \tilde{\mathcal{C}}_{2}(x)^{4} \tilde{\mathcal{C}}_{1}(x)^{4} .
$$

For this purpose we see that

$$
\begin{aligned}
& \mathcal{S}_{3}(x+1)=-\mathcal{S}_{3}(x) \mathcal{S}_{2}(x)^{2} \mathcal{S}_{1}(x) \quad \text { and } \\
& \mathcal{S}_{2}(x+1)=-\mathcal{S}_{2}(x) \mathcal{S}_{1}(x)
\end{aligned}
$$

shown in [KKo], and we have then

$$
\begin{aligned}
\mathcal{S}_{3}(x+2) & =-\mathcal{S}_{3}(x+1) \mathcal{S}_{2}(x+1)^{2} \mathcal{S}_{1}(x+1) \\
& =-\mathcal{S}_{3}(x) \mathcal{S}_{2}(x)^{4} \mathcal{S}_{1}(x)^{4}
\end{aligned}
$$

Hence the periodicity

$$
\begin{aligned}
\tilde{\mathcal{C}}_{3}(x+1) & =\frac{\mathcal{S}_{3}(2 x+2)}{\mathcal{S}_{3}(x+1)^{4}}=\frac{-\mathcal{S}_{3}(2 x) \mathcal{S}_{2}(2 x)^{4} \mathcal{S}_{1}(2 x)^{4}}{\mathcal{S}_{3}(x)^{4} \mathcal{S}_{2}(x)^{8} \mathcal{S}_{1}(x)^{4}} \\
& =-\tilde{\mathcal{C}}_{3}(x) \tilde{\mathcal{C}}_{2}(x)^{4} \tilde{\mathcal{C}}_{1}(x)^{4}
\end{aligned}
$$

follows. Letting $x=0$ we have

$$
\tilde{\mathcal{C}}_{3}(1)=-\tilde{\mathcal{C}}_{3}(0) \tilde{\mathcal{C}}_{2}(0)^{4} \tilde{\mathcal{C}}_{1}(0)^{4}=-16
$$

since $\tilde{\mathcal{C}}_{3}(0)=\tilde{\mathcal{C}}_{2}(0)=1$ and $\tilde{\mathcal{C}}_{1}(0)=2$. This shows (3). We further obtain
$\tilde{\mathcal{C}}_{3}^{\prime}(1)=\lim _{x \rightarrow 1} \tilde{\mathcal{C}}_{3}^{\prime}(x)=\lim _{x \rightarrow 1}\left(-4 \pi x^{2} \tan (\pi x) \tilde{\mathcal{C}}_{3}(x)\right)=0$ and

$$
\begin{aligned}
\tilde{\mathcal{C}}_{3}^{\prime \prime}(1)= & \lim _{x \rightarrow 1} \tilde{\mathcal{C}}_{3}^{\prime \prime}(x) \\
= & \lim _{x \rightarrow 1} \tilde{\mathcal{C}}_{3}(x)\left(16 \pi^{2} x^{4} \tan ^{2}(\pi x)\right. \\
& \left.\quad-8 \pi x \tan (\pi x)-4 \pi x^{2} \frac{\pi}{\cos ^{2}(\pi x)}\right) \\
= & -16\left(-4 \pi \cdot \frac{\pi}{1}\right)=64 \pi^{2} .
\end{aligned}
$$

Those show respectively the assertion (4) and (5).
5. Duplication formulas via power series. We prove Theorem 1.2 and Theorem 1.3. Since $\mathcal{S}_{3}^{\prime}(1) \neq 0$ and $\tilde{\mathcal{C}}_{3}^{\prime}(1 / 2) \neq 0$ by (1) and (2) of Proposition 4.1, the existence of $\Phi(u)$ and $\Psi(u)$ follows immediately. Hence we calculate their first coefficients.

Proof of Theorem 1.2. From Theorem 1.1 it is sufficient to show that

$$
\tilde{\mathcal{C}}_{3}(x)=-16+8 \mathcal{S}_{3}(x)^{2}+\cdots
$$

around $x=1$. Setting

$$
\tilde{\mathcal{C}}_{3}(x)=a_{0}+a_{1} \mathcal{S}_{3}(x)+a_{2} \mathcal{S}_{3}(x)^{2}+\cdots
$$

around $x=1$, we show that $a_{0}=-16, a_{1}=0$ and $a_{2}=8$. By Proposition 4.1 (3), we have $a_{0}=\tilde{\mathcal{C}}_{3}(1)=$ -16 . Also, by Proposition 4.1 (4) and (1) we observe that

$$
a_{1}=\lim _{x \rightarrow 1} \frac{\tilde{\mathcal{C}}_{3}(x)+16}{\mathcal{S}_{3}(x)}=\lim _{x \rightarrow 1} \frac{\tilde{\mathcal{C}}_{3}^{\prime}(x)}{\mathcal{S}_{3}^{\prime}(x)}=\frac{\tilde{\mathcal{C}}_{3}^{\prime}(1)}{\mathcal{S}_{3}^{\prime}(1)}=0
$$

Moreover, using this result we have

$$
\begin{aligned}
a_{2} & =\lim _{x \rightarrow 1} \frac{\tilde{\mathcal{C}}_{3}(x)+16}{\mathcal{S}_{3}(x)^{2}}=\lim _{x \rightarrow 1} \frac{\tilde{\mathcal{C}}_{3}^{\prime}(x)}{2 \mathcal{S}_{3}(x) \mathcal{S}_{3}^{\prime}(x)} \\
& =\lim _{x \rightarrow 1} \frac{\tilde{\mathcal{C}}_{3}^{\prime \prime}(x)}{2 \mathcal{S}_{3}^{\prime}(x)^{2}+2 \mathcal{S}_{3}(x) \mathcal{S}_{3}^{\prime \prime}(x)}=\frac{\tilde{\mathcal{C}}_{3}^{\prime \prime}(1)}{2 \mathcal{S}_{3}^{\prime}(1)^{2}}=8
\end{aligned}
$$

by Proposition 4.1 (5) and (1). This completes the proof of the theorem.

Proof of Theorem 1.3. From the proof of Theorem 1.2 above we have seen that around $x=1$

$$
\tilde{\mathcal{C}_{3}}(x)=-16+8 \mathcal{S}_{3}(x)^{2}+\cdots .
$$

Now put

$$
\tilde{\mathcal{C}}_{3}(2 x)=b_{0}+b_{1} \tilde{\mathcal{C}}_{3}(x)+b_{2} \tilde{\mathcal{C}}_{3}(x)^{2}+\cdots
$$

around $x=1 / 2$. Then it is obvious that $b_{0}=\tilde{\mathcal{C}}_{3}(1)=$ -16 by Proposition 4.1 (4). Next

$$
\begin{aligned}
b_{1} & =\lim _{x \rightarrow \frac{1}{2}} \frac{\tilde{\mathcal{C}}_{3}(2 x)+16}{\tilde{\mathcal{C}}_{3}(x)}=\lim _{x \rightarrow \frac{1}{2}} \frac{\tilde{\mathcal{C}}_{3}(2 x)+16}{\mathcal{S}_{3}(2 x)} \cdot \mathcal{S}_{3}(x)^{4} \\
& =\left(\lim _{x \rightarrow 1} \frac{\tilde{\mathcal{C}_{3}}(x)+16}{\mathcal{S}_{3}(x)}\right) \cdot \mathcal{S}_{3}\left(\frac{1}{2}\right)^{4}=\frac{\tilde{\mathcal{C}_{3}^{\prime}}(1)}{\mathcal{S}_{3}^{\prime}(1)} \cdot \mathcal{S}_{3}\left(\frac{1}{2}\right)^{4} \\
& =0
\end{aligned}
$$

which follows from the Proposition 4.1 (4) and (1). Lastly we calculate

$$
\begin{aligned}
b_{2} & =\lim _{x \rightarrow \frac{1}{2}} \frac{\tilde{\mathcal{C}}_{3}(2 x)+16}{\tilde{\mathcal{C}}_{3}(x)^{2}}=\lim _{x \rightarrow \frac{1}{2}} \frac{\tilde{\mathcal{C}}_{3}(2 x)+16}{\mathcal{S}_{3}(2 x)^{2}} \cdot \mathcal{S}_{3}(x)^{8} \\
& =\left(\lim _{x \rightarrow 1} \frac{\tilde{\mathcal{C}}_{3}(x)+16}{\mathcal{S}_{3}(x)^{2}}\right) \cdot \mathcal{S}_{3}\left(\frac{1}{2}\right)^{8} \\
& =\frac{\tilde{\mathcal{C}}_{3}^{\prime \prime}(1)}{2 \mathcal{S}_{3}^{\prime}(1)^{2}} \cdot \mathcal{S}_{3}\left(\frac{1}{2}\right)^{8}=8\left(2^{\frac{1}{4}} \exp \left(-\frac{7 \zeta(3)}{8 \pi^{2}}\right)\right)^{8} \\
& =32 \exp \left(-\frac{7 \zeta(3)}{\pi^{2}}\right) .
\end{aligned}
$$

This proves the theorem.

References

[E] Euler, L.: De summis serierum numeros Bernoullianos involventium. Novi commentarii academiae scientiarum Petropolitanae 14, 129167 (1769). [Opera Omnia I-15, pp. 91-130].
[K1] Kurokawa, N.: Multiple sine functions and Selberg zeta functions. Proc. Japan Acad., 67A, 61-64 (1991).
[K2] Kurokawa, N.: Gamma factors and Plancherel measures. Proc. Japan Acad., 68A, 256-260 (1992).
[K3] Kurokawa, N.: Multiple zeta functions: an example. Zeta Functions in Geometry. Adv. Stud. Pure Math., vol. 21, Kinokuniya, Tokyo, pp. 219-226 (1992).
[KKo] Kurokawa, N., and Koyama, S.: Multiple sine functions. Forum Math., 15, 839-876 (2003).
[KOW] Kurokawa, N., Ochiai, H., and Wakayama, M.: Multiple trigonometry and zeta functions. J. Ramanujan Math. Soc., 17, 101-113 (2002).
[KW1] Kurokawa, N., and Wakayama, M.: On $\zeta(3)$. J. Ramanujan Math. Soc., 16, 205-214 (2001).
[KW2] Kurokawa, N., and Wakayama, M.: Higher Selberg zeta functions. (Preprint). (2002, updated in 2003).
[KW3] Kurokawa, N., and Wakayama, M.: Extremal values of double and triple trigonometric functions. (To appear in Kyushu J. Math.).
[KW4] Kurokawa, N., and Wakayama, M.: Finite ladders in multiple trigonometry. (Preprint). (2003).
[KW5] Kurokawa, N., and Wakayama, M.: Zeta regularized products for multiple trigonometric functions. (Preprint). (2003).
[M] Manin, Yu. I.: Lectures on zeta functions and motives (according to Deninger and Kurokawa). Astérisque 228, 121-163 (1995).

[^0]: 2000 Mathematics Subject Classification. 11M06.
 *) Department of Mathematics, Tokyo Institute of Technology, 2-12-1, Oh-okayama, Meguro-ku, Tokyo 152-8550.
 **) Faculty of Mathematics, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581.

