
No. 8] Proc. Japan Acad., 79, Ser. A (2003) 123

Duplication formulas in triple trigonometry

By Nobushige Kurokawa∗) and Masato Wakayama∗∗)

(Communicated by Heisuke Hironaka, m. j. a., Oct. 14, 2003)

Abstract: We study the duplication formulas of triple sine and cosine functions from
various expressions point of view.
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1. Introduction. Triple trigonometric func-
tions
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are interesting special functions. For example, the
special value S3(1/2) gives the expression
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to the famous mysterious zeta-value
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as proved in [KW1].
We therefore want to know the arithmetic na-

ture of special values of S3(x) and C3(x). Since
these trigonometric functions are generalizations of
the usual trigonometric functions
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= 2 cos(πx),

it would be natural to study the analogue of the fol-
lowing well-known duplication formulas:
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(A) S1(2x) = S1(x)C1(x),

(B) S1(2x) = S1(x)S1

(
x+

1
2

)
,

(C) S1(2x) = Φ(S1(x)) for Φ(u) = ±u√4− u2,

C1(2x) = Ψ(C1(x)) for Ψ(u) = u2 − 2.
Our first results are generalizations of (A) and (B)
which we call multiplicative duplication formulas.

Theorem 1.1. The multiplicative duplication
formulas of S3(x) hold :
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Also the analogue of the duplication formulas of
type (C) we seek are of the form respectively given
by

S3(2x) = Φ(S3(x))

and

C3(2x) = Ψ(C3(x))

where Φ(u) and Ψ(u) belong in Q[[u]].
If we have such formulas, from the fact S3(1) =

0 we have Φ(S3(1/2)) = 0, which might imply the
algebraicity of the value
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.

Moreover, from the fact Ψ (C3(1/4)) = C3(1/2) = 0
we would have the algebraicity of
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is the Dirichlet L-function for the non-trivial Dirich-
let character χ−4 modulo 4.

The following two theorems are results in the
direction of (C).

Theorem 1.2. There exists a power series

Φ(u) = −16u4 + 8u6 + · · ·
belonging to R[[u]] which satisfies

S3(2x) = Φ(S3(x))

around x = 1.
Theorem 1.3. There exists a power series

Ψ(u) = −16 + 32 exp
(
−7ζ(3)

π2

)
u2 + · · ·

belonging to R[[u]] which satisfies

C3(2x)4 = Ψ(C3(x)4)

around x = 1/2.
2. Multiple trigonometric functions.

We recall here basic multiple trigonometry from
[K1, KKo, KOW]. Multiple trigonometric functions
of degree r ≥ 2 are consisting of the multiple sine
function
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and the multiple cosine function
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where
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.

Besides the triple sine and cosine functions described
in the beginning, for example, these formulas give
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These infinite product expressions are generaliza-
tions of
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We notice that the multiple sine function Sr(x)
is a meromorphic function of order r, which is entire
when r is odd. The multiple cosine function Cr(x) is
a 2r−1-multi-valued function, and

C̃r(x) = Cr(x)2
r−1

=
∞∏

n=1

{
Pr

(
x

n− 1
2

)
Pr

(
− x

n− 1
2

)(−1)r−1}(2n−1)r−1

defines a single-valued meromorphic function of or-
der r. In this paper we use the differential equations

S′
r(x) = Sr(x)πxr−1 cot(πx)

and

C̃′r(x) = −2r−1C̃r(x)πxr−1 tan(πx)

derived from the product expressions via logarithmic
differentiations.

These multiple trigonometric functions were ini-
tially constructed and investigated in [K1, K2, K3].
We refer also to Manin [M] as an excellent survey.
Some details of our study have been published in
[KKo, KW1, KOW] among others.

We are especially interested in the nature of
the special values Sr(n/2) and Cr(n/2) for inte-
gers n. These values are intimately related to
the special values of zeta functions as shown in
[K1, KW1, KOW, KKo] (see also [KW4, KW5]), and
furthermore these give extremal values of the func-
tions Sr(x) and Cr(x) respectively as we determined
in [KW3] when r = 2, 3. (See also [KW2] for its
appearance in the functional equation of the higher
Selberg zeta function). We know the algebraicity of
S1(1/2) = 2 and S2(1/2) =

√
2, but we have no

results concerning the algebraicity of S3(1/2) up to
now. Here we note that the fact S2(1/2) =

√
2 is

not obvious and it is actually equivalent to Euler’s
famous integration ([E])∫ π

2

0

log(sinφ)dφ = −π
2

log 2
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as shown in [KW3].
3. Multiplicative duplication formulas.

We show Theorem 1.1. Since the duplication formula
(A) can be proved for any degree r (r ≥ 2) as

Sr(2x) = Sr(x)2
r−1Cr(x)2

r−1

in a unified way, we show the theorem in this gener-
alized form. In fact, observing the expressions
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we see that
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This shows (A). We notice that this property is valid
for r = 1 also, since S1(2x) = S1(x)C1(x).

Next, we prove (B). We show that
(i) both sides are 1 at x = 0,
(ii) logarithmic derivatives of both sides are

8πx2 cot(2πx).
If we check these facts we can conclude the equality
(B). Concerning (i), we see that the left hand side is
S3(0) = 1 and the right hand side is in fact
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To see (ii), we recall that
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for r ≥ 1 as proved in [KKo]. Hence the logarithmic
derivative of the right hand side is
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which is equal to the logarithmic derivative of the
left hand side. This proves the theorem.

4. Special values. We calculate several spe-
cial values needed in the proofs of Theorem 1.2 and
Theorem 1.3.

Proposition 4.1. We have
(1) S′

3(1) = −2π.

(2) C̃′3
(1

2

)
= −2π exp

(
7ζ(3)
2π2

)
.

(3) C̃3(1) = −16.
(4) C̃′3(1) = 0.
(5) C̃′′3 (1) = 64π2.

Proof. (1) Using the differential equation

S′
3(x+ 1) = S3(x+ 1)π(x+ 1)2 cot(πx)

and the periodicity proved in [KKo]

S3(x+ 1) = −S3(x)S2(x)2S1(x),

we obtain
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3(x + 1) = −πS3(x)S2(x)2(x+ 1)2
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.

Hence
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3(x+ 1) = −πS3(0)S2(0)2 · 2 = −2π

since S3(0) = S2(0) = 1.
(2) From the duplication formula C̃3(x) =

(S3(2x))/(S3(x)4) of Theorem 1.1, we calculate
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= 2S′
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(3) We first show the periodicity of C̃3(x):

C̃3(x+ 1) = −C̃3(x)C̃2(x)4C̃1(x)4.

For this purpose we see that

S3(x+ 1) = −S3(x)S2(x)2S1(x) and

S2(x+ 1) = −S2(x)S1(x)

shown in [KKo], and we have then

S3(x+ 2) = −S3(x+ 1)S2(x + 1)2S1(x+ 1)

= −S3(x)S2(x)4S1(x)4.

Hence the periodicity

C̃3(x+ 1) =
S3(2x+ 2)
S3(x + 1)4

=
−S3(2x)S2(2x)4S1(2x)4

S3(x)4S2(x)8S1(x)4

= −C̃3(x)C̃2(x)4C̃1(x)4

follows. Letting x = 0 we have

C̃3(1) = −C̃3(0)C̃2(0)4C̃1(0)4 = −16

since C̃3(0) = C̃2(0) = 1 and C̃1(0) = 2. This shows
(3). We further obtain

C̃′3(1) = lim
x→1

C̃′3(x) = lim
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(− 4πx2 tan(πx)C̃3(x)
)

= 0

and
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− 8πx tan(πx)− 4πx2 π
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)
= −16
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1

)
= 64π2.

Those show respectively the assertion (4) and (5).
5. Duplication formulas via power series.

We prove Theorem 1.2 and Theorem 1.3. Since
S′

3(1) �= 0 and C̃′3(1/2) �= 0 by (1) and (2) of Proposi-
tion 4.1, the existence of Φ(u) and Ψ(u) follows im-
mediately. Hence we calculate their first coefficients.

Proof of Theorem 1.2. From Theorem 1.1 it is
sufficient to show that

C̃3(x) = −16 + 8S3(x)2 + · · ·
around x = 1. Setting

C̃3(x) = a0 + a1S3(x) + a2S3(x)2 + · · ·
around x = 1, we show that a0 = −16, a1 = 0 and
a2 = 8. By Proposition 4.1 (3), we have a0 = C̃3(1) =
−16. Also, by Proposition 4.1 (4) and (1) we observe
that
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by Proposition 4.1 (5) and (1). This completes the
proof of the theorem.

Proof of Theorem 1.3. From the proof of The-
orem 1.2 above we have seen that around x = 1

C̃3(x) = −16 + 8S3(x)2 + · · · .
Now put

C̃3(2x) = b0 + b1C̃3(x) + b2C̃3(x)2 + · · ·
around x = 1/2. Then it is obvious that b0 = C̃3(1) =
−16 by Proposition 4.1 (4). Next
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which follows from the Proposition 4.1 (4) and (1).
Lastly we calculate

b2 = lim
x→ 1

2

C̃3(2x) + 16
C̃3(x)2

= lim
x→1

2

C̃3(2x) + 16
S3(2x)2

· S3(x)8

=
(

lim
x→1

C̃3(x) + 16
S3(x)2

)
· S3

(1
2

)8

=
C̃′′3 (1)

2S′
3(1)2

· S3

(1
2

)8

= 8
(

2
1
4 exp

(
− 7ζ(3)

8π2

))8

= 32 exp
(
−7ζ(3)

π2

)
.

This proves the theorem.
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