On a certain invariant for real quadratic fields

By Seok-Min Lee and Takashi Ono

Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland, 21218-2689, U. S. A.
(Communicated by Shokichi Iyanaga, M. J. A., Oct. 14, 2003)

Abstract

Let $K=\mathbf{Q}(\sqrt{m})$ be a real quadratic field, \mathcal{O}_{K} its ring of integers and $G=$ $\operatorname{Gal}(K / \mathbf{Q})$. For $\gamma \in H^{1}\left(G, \mathcal{O}_{K}^{\times}\right)$, we associate a module M_{c} / P_{c} for $\gamma=[c]$. It is known that $M_{c} / P_{c} \approx \mathbf{Z} / \Delta_{m} \mathbf{Z}$ where $\Delta_{m}=1$ or 2 and we will determine Δ_{m}.

Key words: Real quadratic field; fundamental unit; parity; continued fractions.

1. Introduction. This is a continuation and completion of [1]. Let m be a square free positive integer, $K=\mathbf{Q}(\sqrt{m})$ the corresponding real quadratic field, \mathcal{O}_{K} the ring of integers of $K, \mathcal{O}_{K}^{\times}$the group of units of K and $G=\operatorname{Gal}(K / \mathbf{Q})=\langle s\rangle$. To each $\gamma=$ $[c] \in H^{1}\left(G, \mathcal{O}_{K}^{\times}\right), \mathrm{T}$. Ono [1] associated a module M_{c} / P_{c} where

$$
\begin{gathered}
M_{c}=\left\{\alpha \in \mathcal{O}_{K} ; c^{s} \alpha=\alpha\right\} \\
P_{c}=\left\{p_{c}(z)=z+c^{s} z, z \in \mathcal{O}_{K}\right\} .
\end{gathered}
$$

The module M_{c} / P_{c} is of order 1 or 2 and depends only on the cohomology class $\gamma=[c]$. Actually the case $c=\varepsilon$, the fundamental unit of K, with $N \varepsilon=1$, is essential and he put

$$
\Delta_{m}=\left[M_{\varepsilon}: P_{\varepsilon}\right]
$$

So the problem is to determine $\Delta_{m}=1$ or 2 in terms of m. On the basis of Lee's computation for $m<$ 1000, Ono conjectured that
(I) $m \equiv 1(\bmod 4) \Rightarrow \Delta_{m}=1$,
(II) $m \equiv 2(\bmod 4) \Rightarrow \Delta_{m}=2$,
(III) $m \equiv 3(\bmod 4)$;

$$
\begin{array}{ll}
a_{s} \equiv 1 & (\bmod 2) \Rightarrow \Delta_{m}=1 \\
a_{s} \equiv 0 & (\bmod 2) \Rightarrow \Delta_{m}=2
\end{array}
$$

where $\sqrt{m}=\left[a_{0} ; \overline{a_{1}, \ldots, a_{s-1}, a_{s}, a_{s-1}, \ldots, a_{1}, 2 a_{0}}\right]$, the standard continued fraction expansion.

In this paper, we shall prove that (I), (II), (III) are all true (Theorem 9, Theorem 10, Theorem 13).
2. Notation. Let $K=\mathbf{Q}(\sqrt{m}), m>0$, square free. Let $\{1, \omega\}$ be the standard basis of \mathcal{O}_{K};

$$
\omega= \begin{cases}\sqrt{m}, & m \equiv 2,3 \quad(\bmod 4) \\ \frac{1+\sqrt{m}}{2}, & m \equiv 1 \quad(\bmod 4)\end{cases}
$$

We write the fundamental unit ε as $\varepsilon=u+v \omega$, $u, v \in \mathbf{Z}$. Note that $(u, v)=1$. Following [1], we put

$$
\begin{gathered}
d=(v, u-1), \quad e=(v, u+1) \\
D=v / e
\end{gathered}
$$

In [1], we find $\left[M_{\varepsilon}: P_{\varepsilon}\right]=$

$$
\begin{equation*}
\Delta_{m}=\frac{d}{(D, d)} \tag{1}
\end{equation*}
$$

Proposition 1. $\Delta_{m}=1 \Leftrightarrow d e \mid v$.
Proof. $\quad d /(D, d)=1 \Leftrightarrow d=(D, d) \Leftrightarrow d \mid D \Leftrightarrow$ $d|(v / e) \Leftrightarrow d e| v$.
3. Proof of (I), (II).

Proposition 2. If v is odd, then $\Delta_{m}=1$.
Proof. Note that $(v, u-1)$ and $(v, u+1)$ are odd divisors of v but $(u+1, u-1) \mid 2$. Then $(v, u-$ $1)$ and $(v, u+1)$ are mutually prime divisors of v. Hence we get $(v, u-1)(v, u+1) \mid v$.

When v is even (then u is odd), let $v^{\prime}=v / 2$ and $u^{\prime}=(u-1) / 2$. Then

$$
d=(v, u-1)=\left(2 v^{\prime}, 2 u^{\prime}\right)=2\left(v^{\prime}, u^{\prime}\right)=2 d^{\prime}
$$

with $d^{\prime}=\left(u^{\prime}, v^{\prime}\right)$ and

$$
e=(v, u+1)=\left(2 v^{\prime}, 2 u^{\prime}+2\right)=2\left(v^{\prime}, u^{\prime}+1\right)=2 e^{\prime}
$$

with $e^{\prime}=\left(v^{\prime}, u^{\prime}+1\right)$. Note that d^{\prime} and e^{\prime} are mutually prime divisors of v^{\prime}. Hence we have

$$
\begin{equation*}
d^{\prime} e^{\prime}=\left(v^{\prime}, u^{\prime}\right)\left(v^{\prime}, u^{\prime}+1\right) \mid v^{\prime} \tag{2}
\end{equation*}
$$

that is,

$$
\begin{equation*}
d^{\prime} \left\lvert\, \frac{v^{\prime}}{e^{\prime}}=\frac{2 v^{\prime}}{2 e^{\prime}}=\frac{v}{e}=D\right. \tag{3}
\end{equation*}
$$

We have two cases;
(i) $2 d^{\prime} e^{\prime} \mid v^{\prime}$: we have $d e=4 d^{\prime} e^{\prime} \mid 2 v^{\prime}=v$ so $\Delta_{m}=$ 1 by Proposition 1.
(ii) $2 d^{\prime} e^{\prime} \nmid v^{\prime}$: we have $d e \nmid v$ and $d \nmid(v / e)=D$. Since $d^{\prime} \mid D,(D, d)=\left(D, 2 d^{\prime}\right)=d^{\prime}$ and hence $\Delta_{m}=d /(D, d)=\left(d / d^{\prime}\right)=2$.
Therefore we have proved $\Delta_{m}=1$ or 2 for any m and;

Proposition 3. If v is even, using the notations above,

$$
2 d^{\prime} e^{\prime} \mid v^{\prime} \Leftrightarrow \Delta_{m}=1
$$

or equivalently,

$$
2 d^{\prime} e^{\prime} \nmid v^{\prime} \Leftrightarrow \Delta_{m}=2 .
$$

Proposition 4. If v is even (and u is odd), let $\nu \geq 1$ be such that

$$
2^{\nu} \| v
$$

i.e. the largest positive integer such that $2^{\nu} \mid v$. Then

$$
u \equiv \pm 1 \quad\left(\bmod 2^{\nu}\right) \Leftrightarrow \Delta_{m}=2
$$

Proof.
(Case 1) $\quad \nu=1: v \equiv 2(\bmod 4)$ so v^{\prime} is odd, and $2 d^{\prime} e^{\prime} \nmid v^{\prime}$. Hence $\Delta_{m}=2$ by Proposition 2. On the other hand, u is odd so $u \equiv \pm 1(\bmod 2)$.
(Case 2) $\quad \nu \geq 2: 2^{\nu} \| v$ then $2^{\nu-1} \| v^{\prime}=(v / 2)$. Since $u^{\prime}=(u-1) / 2$, note that $u \equiv \pm 1(\bmod 2)^{\nu} \Leftrightarrow$ one of $u+1, u-1 \equiv 0(\bmod 2)^{\nu} \Leftrightarrow$ one of $u^{\prime}, u^{\prime}+1$ $\equiv 0(\bmod 2)^{\nu-1}$.
(\Leftarrow) If $u \not \equiv \pm 1\left(\bmod 2^{\nu}\right)$, neither u^{\prime} nor $u^{\prime}+1$ is congruent to $0(\bmod 2)^{\nu-1}$.
Since $\left(v^{\prime}, u^{\prime}\right)$ and $\left(v^{\prime}, u^{\prime}+1\right)$ are mutually prime, we have $2^{\nu-1} \nmid\left(v^{\prime}, u^{\prime}\right)\left(v^{\prime}, u^{\prime}+1\right)$. But since $\left(v^{\prime}, u^{\prime}\right)\left(v^{\prime}, u^{\prime}+1\right) \mid v^{\prime}$ and $2^{\nu-1} \mid v^{\prime}$, we have $2\left(v^{\prime}, u^{\prime}\right)\left(v^{\prime}, u^{\prime}+1\right) \mid v^{\prime}$ and thus $\Delta_{m}=1$.
$(\Rightarrow) \quad$ If $u \equiv \pm 1\left(\bmod 2^{\nu}\right)$, one of $u^{\prime}, u^{\prime}+1 \equiv$ $0(\bmod 2)^{\nu-1}$. So $2^{\nu-1} \mid\left(v^{\prime}, u^{\prime}\right)\left(v^{\prime}, u^{\prime}+1\right)$ and $2^{\nu} \mid 2\left(v^{\prime}, u^{\prime}\right)\left(v^{\prime}, u^{\prime}+1\right)$. But $2^{\nu} \nmid v^{\prime}$ so $2\left(v^{\prime}, u^{\prime}\right)\left(v^{\prime}, u^{\prime}+1\right) \nmid v^{\prime}$ and hence $\Delta_{m}=2$.

Proposition 5. If v is even but $8 \nmid v$ then $\Delta_{m}=2$.

Proof. For $\nu=2$ or 4 (resp.), odd u should be congruent to $\pm 1(\bmod 2)$ or $(\bmod 4)($ resp. $)$.

Lemma 6. For $\nu \geq 3$,

$$
\begin{array}{lll}
a^{2} \equiv 1 & (\bmod 2)^{\nu} \Leftrightarrow a \equiv \pm 1 & \left(\bmod 2^{\nu}\right) \\
& \text { or } a \equiv \pm\left(2^{\nu-1}-1\right) & \left(\bmod 2^{\nu}\right)
\end{array}
$$

Proof. First, $(\pm 1)^{2}=1$ and $\left(\pm\left(2^{\nu-1}-1\right)\right)^{2}=$
$2^{2 \nu-2}-2^{\nu}+1 \equiv 1(\bmod 2)^{\nu}$ since $2 \nu-2 \geq \nu$ for $\nu \geq 3$. It is known that the unit group $\bmod 2^{\nu}$ is isomorphic to the direct product of two cyclic groups of order 2 and $2^{\nu-2}$

$$
\left(\mathbf{Z} / 2^{\nu} \mathbf{Z}\right)^{\times} \simeq\langle-1\rangle \times\langle 5\rangle
$$

where $(-1)^{2} \equiv 1$ and $5^{2^{\nu-2}} \equiv 1\left(\bmod 2^{\nu}\right)$. Let $a \in$ $\left(\mathbf{Z} / 2^{\nu} \mathbf{Z}\right)^{\times}$such that $a^{2} \equiv 1\left(\bmod 2^{\nu}\right)$ other than ± 1. We can write $a=(-1)^{i} 5^{j}$ with $i=0$ or 1 and $1 \leq$ $j<2^{\nu-2}$.

$$
\begin{aligned}
a^{2} \equiv 1 \quad\left(\bmod 2^{\nu}\right) & \Leftrightarrow 5^{2 j} \equiv 1 \quad\left(\bmod 2^{\nu}\right) \\
& \Leftrightarrow 2^{\nu-2} \mid 2 j \\
& \Leftrightarrow 2^{\nu-3} \mid j
\end{aligned}
$$

Since $1 \leq j<2^{\nu-2}, j=2^{\nu-3}$. So we have only four elements $\pm 1, \pm 5^{2^{\nu-3}}$, with square $\equiv 1\left(\bmod 2^{\nu}\right)$.

Lemma 7. If a, b are integers and b is even such that $a^{2}-m b^{2}=1$ and $2^{\nu} \| b$ where $\nu \geq 2$ then $a \equiv \pm 1\left(\bmod 2^{\nu+1}\right)$.

Proof. First note that

$$
\begin{equation*}
2^{\nu} \| b \Rightarrow a^{2} \equiv 1 \quad\left(\bmod 2^{2 \nu}\right) \tag{4}
\end{equation*}
$$

Then by the previous lemma, $a \equiv \pm 1$ or $\pm 2^{2 \nu-1}-1$) $\left(\bmod 2^{2 \nu}\right)$. Since $\nu \geq 2,2 \nu-1 \geq \nu+1$ so $\pm\left(2^{2 \nu-1}-\right.$ $1) \equiv \mp 1\left(\bmod 2^{\nu+1}\right)$ 。

Proposition 8. If $\varepsilon=u+v \sqrt{m}$ with v even, then $\Delta_{m}=2$.

Proof. If $8 \nmid v$ then $\Delta_{m}=2$ by Proposition 5. If $2^{\nu} \| v$ with $\nu \geq 3$ then $u \equiv \pm 1\left(\bmod 2^{\nu}\right)$ by Lemma 7 , hence $\Delta_{m}=2$ by Proposition 4.

Theorem 9. If $m \equiv 2(\bmod 4)$ then $\Delta_{m}=$ 2. For $m \equiv 3(\bmod 4), \Delta_{m}=1 \Leftrightarrow v$ is odd.

Proof. If $m \equiv 2(\bmod 4)$ then $1=u^{2}-m v^{2} \equiv$ $u^{2}-2 v^{2}(\bmod 4)$. Since all squares $\bmod 4$ are 0 and 1 , only possibility is $v^{2} \equiv 0$ and $u^{2} \equiv 1$. So v is even. The rest follows from Proposition 2 and Propositon 8.

Theorem 10. If $m \equiv 1(\bmod 4)$ then $\Delta_{m}=$ 1.

Proof. By Proposition 2, we may assume that v is even. Denote $\varepsilon=u+v \omega=a+b \sqrt{m}$ where $a=$ $u+(v / 2)$ and $b=v / 2$. Then $1=a^{2}-m b^{2} \equiv a^{2}-$ $b^{2}(\bmod 4)$. Since 0,1 are all squares $\bmod 4$, only possible case is for $b^{2} \equiv 0$ and $a^{2} \equiv 1(\bmod 4)$ and so a is odd and b is even. Now, consider the equation $a^{2}-m b^{2} \equiv 1(\bmod 8)$. The only square $\bmod 8$ are 0, 1 , and 4 . Since a is odd, $a^{2} \equiv 1(\bmod 8)$. We have $b^{2} \equiv 0$ or $4(\bmod 8)$, and $m \equiv 1$ or $m \equiv 5(\bmod 8)$. Only possible case is $b^{2} \equiv 0(\bmod 8)$. We get $b \equiv 0$
$(\bmod 4)$ and so $8 \mid v$. Let $\nu \geq 3$ be the integer such that $2^{\nu} \| v$. Then $2^{\nu-1} \| b$, and we get $a \equiv \pm 1$ $\left(\bmod 2^{\nu}\right)$ by Lemma 7 . Since $2^{\nu} \nmid b, u=a-b \equiv$ $\pm 1-2^{\nu-1} \not \equiv \pm 1\left(\bmod 2^{\nu}\right)$. Then by Proposition 4 , we get $\Delta_{m}=1$.
4. Proof of (III). Now it remains to determine Δ_{m} for $m \equiv 3(\bmod 4)$. In this section, we consider the continued fraction of $\sqrt{m}=$ $\left[a_{0} ; \overline{a_{1}, a_{2}, \ldots, a_{r}}\right]$. As for basic properties of continued fractions, see [2];

1. the period r is odd \Leftrightarrow the equation $x^{2}-m y^{2}=$ -1 has an integer solution. Since $N(\varepsilon)=+1$ if $m \equiv 3(\bmod 4), r$ is even.
2. $a_{0}=[\sqrt{m}]$ (the integer part), $a_{r}=2 a_{0}$, and $a_{i}=a_{r-i}$ for $i=1, \ldots, r-1$, so $\sqrt{m}=\left[a_{0} ; \overline{a_{1}, \ldots, a_{s-1}, a_{s}, a_{s-1}, \ldots, a_{1}, 2 a_{0}}\right]$ where $s=r / 2$.
3. We can associate a finite continued fraction with a matrix product,

$$
\begin{array}{r}
{\left[a_{0}, a_{1}, \ldots, a_{n}\right] \leftrightarrow\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right)} \\
\ldots\left(\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
p_{n} & p_{n-1} \\
q_{n} & q_{n-1}
\end{array}\right),
\end{array}
$$

or inductively,

$$
\begin{aligned}
p_{-1}=1, & p_{0}=a_{0},
\end{aligned} \quad p_{i}=a_{i} p_{i-1}+p_{i-2}, ~ 子, ~ q_{-1}=0, \quad q_{0}=1, \quad q_{i}=a_{i} q_{i-1}+q_{i-2} .
$$

Then

$$
\left[a_{0}, a_{1}, \ldots, a_{n}\right]=\frac{p_{n}}{q_{n}}
$$

We set $P_{n}=\left(\begin{array}{cc}p_{n} & p_{n-1} \\ q_{n} & q_{n-1}\end{array}\right)$. Then we have
(5) $\quad \operatorname{det} P_{n}=p_{n} q_{n-1}-q_{n} p_{n-1}=(-1)^{n+1}$.

If we write

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \gamma=\frac{a \gamma+b}{c \gamma+d}
$$

where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbf{Z})$ and $\gamma \in \mathbf{R}-\mathbf{Q}$, then we have $\left[a_{0}, \ldots, a_{n-1}, \gamma\right]=P_{n-1} \gamma$.
4. The fundamental unit $\varepsilon=u+v \sqrt{m}$ is given by $u=p_{r-1}, v=q_{r-1}$ if $m \equiv 2,3(\bmod 4)$.

Lemma 11.

$\left(\begin{array}{cc}m q_{r-1} & p_{r-1} \\ p_{r-1} & q_{r-1}\end{array}\right)=\left(\begin{array}{cc}p_{r-1} & p_{r-2} \\ q_{r-1} & q_{r-2}\end{array}\right)\left(\begin{array}{cc}a_{0} & 1 \\ 1 & 0\end{array}\right)$.
Proof. We have

$$
\begin{aligned}
\sqrt{m} & =\left[a_{0}, a_{1}, \ldots, a_{r-1}, a_{0}+\sqrt{m}\right] \\
& =P_{r-1}\left(a_{0}+\sqrt{m}\right) \\
& =\frac{p_{r-1}\left(a_{0}+\sqrt{m}\right)+p_{r-2}}{q_{r-1}\left(a_{0}+\sqrt{m}\right)+q_{r-2}}
\end{aligned}
$$

So $\sqrt{m}\left(a_{0} q_{r-1}+q_{r-2}-p_{r-1}\right)=a_{0} p_{r-1}+p_{r-2}-$ $m q_{r-1}$, i.e.

$$
\begin{aligned}
m q_{r-1} & =a_{0} p_{r-1}+p_{r-2} \\
p_{r-1} & =a_{0} q_{r-1}+q_{r-2}
\end{aligned}
$$

Lemma 12.

$$
\begin{aligned}
v & =q_{s-1}\left(q_{s}+q_{s-2}\right)=q_{s-1}\left(a_{s} q_{s-1}+2 q_{s-2}\right), \\
m v & =p_{s-1}\left(p_{s}+p_{s-2}\right)=p_{s-1}\left(a_{s} p_{s-1}+2 p_{s-2}\right)
\end{aligned}
$$

where $s=r / 2$.
Proof.

$$
\begin{aligned}
P_{r-1} & =\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{s-1} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{s} & 1 \\
1 & 0
\end{array}\right) \\
& \quad\left(\begin{array}{cc}
a_{s-1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right) \\
& =P_{s}\left(\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)^{-1} P_{s-1}\right)^{T} \\
& =P_{s} P_{s-1}^{T}\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)^{-1} .
\end{aligned}
$$

Then by Lemma 11,

$$
\begin{aligned}
& \left(\begin{array}{cc}
m q_{r-1} & p_{r-1} \\
p_{r-1} & q_{r-1}
\end{array}\right)=P_{r-1}\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right) \\
& \quad=P_{s} P_{s-1}^{T}\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right)^{-1}\left(\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right) \\
& \quad=P_{s} P_{s-1}^{T} \\
& \quad=\left(\begin{array}{cc}
p_{s} & p_{s-1} \\
q_{s} & q_{s-1}
\end{array}\right)\left(\begin{array}{cc}
p_{s-1} & q_{s-1} \\
p_{s-2} & q_{s-2}
\end{array}\right) \\
& \quad=\left(\begin{array}{cc}
p_{s-1}\left(p_{s}+p_{s-2}\right) & p_{s} q_{s-1}+p_{s-1} q_{s-2} \\
p_{s-1} q_{s}+p_{s-2} q_{s-1} & q_{s-1}\left(q_{s}+q_{s-2}\right)
\end{array}\right)
\end{aligned}
$$

Now remember that $v=q_{r-1}$.
Theorem 13. For $m \equiv 3(\bmod 4)$ and $\sqrt{m}=\left[a_{0} ; \overline{a_{1}, a_{2}, \ldots, a_{r}}\right]$, then $v \equiv a_{s}(\bmod 2)$ where $s=r / 2$. So $\Delta_{m}=1 \Leftrightarrow a_{s}$ is odd.

Proof. By Lemma 12, $v \equiv a_{s} p_{s-1}(\bmod 2)$ and $v \equiv a_{s} q_{s-1}(\bmod 2)$. Since p_{s-1} and q_{s-1} are mutually prime by (5), they cannot be both even. One of the congruences says $v \equiv a_{s}(\bmod 2)$.

References

[1] Ono, T.: A Note on Poincaré sums for finite groups. Proc. Japan Acad., 79A, 95-97 (2003).
[2] Stark, H. M.: An Introduction to Number Theory. The MIT Press, Cambridge, MassachusettsLondon, England (1978).

