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Abstract:

In this paper, we compute L,(1, x) mod p when x is the nontrivial character

of a real quadratic field. As a result, we give a sufficient condition for Iwasawa invariants p,(k),
Ap(k) to vanish when p splits in a real quadratic field k.
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Let k£ be a number field
and p a prime number. For a Z,-extension k =
ko Ck C--- Cky C - C ks with Galois groups
Gal(ky,/k) ~ Z/p"Z, let A, be the p-Sylow subgroup
of the ideal class group of k,. Then, by Iwasawa,
there exists integers p,(k), A\p(k) and v, (k) such that
|A,| = prrEIntre(RP"+v(k) for sufficiently large n.
Greenberg’s conjecture [2] claims that both w,(k),
Ap (k) vanishes for the cyclotomic Z,-extension of any
totally real number field k. Several authors studied
Greenberg’s conjecture when k is a real quadratic
field and p is a small prime. But little is known in
the case of large primes. In this paper, we give a
sufficient condition for the Iwasawa invariants i, (k),
Ap(k) to vanish when k is real quadratic, so that we
can determine whether Greenberg’s conjecture holds
for large primes. The followings are the main results
of this paper.

1. Introduction.

Theorem 1. Let x be an even Dirichlet char-
acter of conductor A, and p be an odd prime rel-
atively prime to A. Let Ly(s,x) be the p-adic L-
function associated with x. Then

ap 2 1 1
1 mod p

L,(1 =3 (145442
x(p) " Lp(1, x) t_l( 5 t)

(x(rt) + x(rt +1) -+ x(rt + r — 1)),

where r and s are integers such that rp 4+ sA = 1.

Corollary 1. Let D be a square free integer,
k = Q(V/D) a real quadratic field, and x the non-
trivial character of k. Let A be the discriminant of
k and p an odd prime which splits in k. Then
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v (Z(1+-~'+%)(X(rt)+~~+x(rt+r—1))>

=0 = 1,(Q(VD)) = 3(Q(VD)) =0,

where vy, is the valuation of C;, normalized by p]v, =
(1/p).

2. Proof of theorems.
orem 1.

First we prove The-

Proof. Let (a be a primitive A-th root of unity.
By Proposition 2 in [3], we see that

mod p
LP(LX) =
Xp) §S (XX
x(J X=
A — p(1 — X79) ot Sa
So

x(p)
L,(1 ==L
P( 7X) Ap
A 1_xTIP A A
where A(X) =372, 113(X'i Zj:l X(7) X", B(X) =
Ele % ZJ 1 X(j)X%¥. First we compute the
value of A(Ca) :

(A(Ca) — B(¢a)),
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So,
rp—1
AGa) = Y x(na=o.
t=0

Next we compute the value of B((a):
Let (1 —T)P~' = S>P_ ) C,T". Then

B(X)
A rivp A
=y S )xe
i=1 j=1
A i A
_ Z (11__)§(z ) (1 . Xm')pfl ZX(])X”
i=1 J=1

. +X(r71)z)ZCtthZX(j)X1j
= t=0 j=1

A .y -
3 X)X,
A
D o x()HXTHIC,
A . .
4. +Z ZX(j)X(rt+J+T71)ZCt
A A
— Zx(j)ctzx(rt—l-j)i

A A
+ Z x(7)Cy ZX(rt+j+1)i

t=0 j=1 i=1

A A
4t Z X(])Ct Z X(rt+j+7'—1)i.

t=0 j=1 i=1

So

Ly(1,x) = X—(A(CA) — B(Ca))
Ce(x(rt) + x(rt +1) +---

+x(rt+r— 1))).

Note that C; =1 (mod p). By using Cp = 1 and for
t>1
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1) ,
Ce = (p(—pl —)t)!t!(l)
El—<1+%+ +¥>p (mod p?)

t=1
p—1 1

= x(®) Y (147 ) () -+ x(rt £ 7=1)).
t=1

This completes the proof. [

Let D,, be the subgroup of A,, consisting of ideal
classes represented by products of prime ideals of &,
lying above p. Taya [4] proved the following theorem
using a theorem of Greenberg [2].

Theorem 2. Let k be a totally real number
field and p an odd prime number. Assume that p
splits completely in k and also that Lepoldt’s conjec-
ture is valid for k and p. Then the following are
equivalent.

(1) Ap(k) = pp(k) = 0.
(2) |Dyn| = |Ag|ptrFrEN=IQIFL for some n > 0.

Here R, (k) is the p-adic regulator of k. When
k is a real abelian number field, we can compute
vp(Rp(k)) by the theorem of Colmez [1]:

tim (s — 1)¢, (s, k)

_ 2[k:Q]71hkRp(k) . -1
= NGn g(l N(p)™).

When p splits completely in k, then it follows from
the above formula that

H LP(L X)
1#x€Gal(k/Q)
7 Q[k:Q]ilhkRp(k)(l _ pfl)[k:Q]fl
A .
Note that v,(R,(k)) > [k : Q] — 1, hence if the left
hand side of the above formula is a p adic unit, we
see that p f hy. Note also that Leopoldt’s conjecture
holds for any real abelian extension over Q. Now the
proof of Corollary 1 follows directly from Theorem 1,
Theorem 2 and discussion above.
Remark 1. Note that x(t) = (A/t), and

x(t) = (¢/D) when D = 1mod4. Here (¥) is a
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Kronecker symbol. For p, A < 200 with p = 1(A),

p—1 1
Ly(1,x) = Z(H 5+

t=1

1) (1) £0 (mod p)

except for p = 181, A = 60. Hence 1,(Q(vVD)) =
M (Q(VD)) = 0 except for Q(v/15) and p = 181
when p, A < 200. We do not know whether the
Greenberg’s conjecture holds for k& = Q(+/15) and
p=181.

3. The case of conductor p. In this sec-
tion we turn our attention to the evaluation of
(Lp(1,x) mod p) when the conductor of a Dirichlet
character y is p. Let w be the Teichmuller character
of conductor p.

Theorem 3. Let p = 1 (mod 4) be a prime
number, x = w?~Y/2 be the nontrivial character for

Q(y/p). Then we have
L,(1,x) = 2B(-1))2

(p—1)/2

=Y (‘g) <%a”1 +ap2) (mod p).

a=1
Here (+) is a Kronecker symbol and B, is a n-th
Bernoulli number.
Proof. The first equality is already known
(see the proof of Theorem 5.37 in Washing-

ton [5]). By Corollary 5.15 [5], By ,0-3/2 =
Bp-1y/2/(p—1)/2 = —2Bg,_1y/2 (mod p). From
the decomposition a = w(a)(a),
lpi1 p
Z £y p—1
).
122 124
= EZX(G)G”_l = ];ZX(G)@”_I
a=1 a=1
151 -
=-> x@((a) ' -1)
pa:l
122 -
= EZX(G)(@ -D({@)’ "+ +(a) +1)
a=1

Ly(1,x) mod p 13
151 151
=Y x(a){a) = —=Y WV (a)w  (a)a
pa:l pa:l
=By ,w-9/2 =2B_1)/2 (mod p),
and
lp_1 p
Z 2 4p—1
)
1(17 1)/2 1 (p—1)/2 »
= aP~ 1 ( ) p—a p—1
p 2 e X oo
o (P 1)/2 (r—1)/2
E Z <)ap1+ Z ()apQ (mod p),
which completes the proof. L]

Remark 2. Let p = 1 (mod 4) be a prime
number, h, e = (t +u,/p)/2 > 1 be the class number
and fundamental unit for Q(/p). Then, by Ankeny-
Artin-Chowla,

U
;h = Bp—1y/2 (mod p).

Since h < /p, the above congruence actually deter-
mines h if p f B(,—1y/2. For p < 6,270,713, no exam-
ples of pf B(,_1)/2 are known (See p.82 for details
in [5]).
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