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Note on the ring of integers of a Kummer extension of prime degree. V
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Abstract: Let 	 be a prime number, and K a number field with ζ� ∈ K×. We give a
simple necessary and sufficient condition for all tame Kummer extensions over K of degree 	 to
have a relative normal integral basis. The result is given in terms of the class number and the
group of units of K.
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1. Introduction. Let K be a number field.
In this note, we give a simple necessary and suffi-
cient condition for all tame Kummer extensions over
K of a given prime degree to have a relative normal
integral basis (NIB for short). Let OK be the ring of
integers of K, and hK the class number of K. For a
commutative ring R with identity, we denote by R×

the group of units of R. In particular, EK = O×
K

is the group of units of K. For an element a ∈ R,
we write R/a = R/aR for brevity. For an integer
n ≥ 2, we denote by [EK]n the subgroup of the mul-
tiplicative group (OK/n)× generated by the classes
containing units of K. For a prime number 	, let
ζ� be a primitive 	-th root of unity. We say that a
finite extension of a number field is tame when it is
at most tamely ramified at all finite primes.

For a prime number 	 and a number field K,
Greither et al . [3, Corollary 7] gave a necessary con-
dition for all tame cyclic extensions over K of degree
	 to have a NIB. The following is a consequence of
this result.

Proposition 1. Let 	 be a prime number with
	 ≥ 5. Then, there exists no number field K with
ζ� ∈ K× satisfying the following condition:

(i) Any tame Kummer extension over K of de-
gree 	 has a NIB.

When 	 = 2, 3, the following assertions hold.
Proposition 2. Let 	 = 2 or 3, and let K be a

number field with ζ� ∈ K×. The following conditions
are equivalent :

(i) Any tame Kummer extension over K of de-
gree 	 has a NIB.

(ii) We have hK = 1 and (OK/	)× = [EK]�.
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Proposition 3. Let 	 = 2, and K a number
field. The following conditions are equivalent :

(i) Any tame Kummer extension over K of ex-
ponent 2 has a NIB.

(ii) Any tame Kummer extension over K of
exponent 2 and of degree dividing 4 has a NIB.

(iii) We have hK = 1 and (OK/4)× = [EK]4.
Remark. (1) In [2, Theorem 2.1], Gómez

Ayala gave a necessary and sufficient condition for
a tame Kummer extension of prime degree to have
a NIB. The implication (ii)⇒ (i) in Proposition 2 is
an immediate consequence of this theorem. When
	 = 2, (i)⇒ (ii) is shown in [3]. So, the new part
in Proposition 2 is the implication (i) ⇒ (ii) for 	 =
3. (2) When 	 = 3, we could not obtain an asser-
tion corresponding to Proposition 3 by the method
of this note.

Example 1. Let 	 = 3. The condition (ii) in
Proposition 2 is satisfied when K = Q(

√−3) as is
shown in [2, p. 110]. It is known by Uchida [8] that
among biquadratic fields K = Q(

√−3,
√
d) with d ∈

Z, there are 13 fields with hK = 1. (For this, confer
also Yamamura [10].) Among these 13 K’s, we see
that the condition (ii) in Proposition 2 is satisfied
when and only when d = −1, −2, −11. To check
the condition (OK/3)× = [EK]3, we have to know
a fundamental unit of K. For this, we have used
some results of Hasse [4, Section 26] on unit index of
imaginary abelian fields.

Example 2. The condition (OK/4)× = [EK]4
in Proposition 3 is satisfied only when K is totally
real. This is shown in a way similar to the proof of
Proposition 1 in Section 2. Let K be a real quadratic
field with hK = 1, and ε a fundamental unit of K.
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When 2 splits in K, we easily see that the condition
(OK/2)× = [EK]2 holds, and that (OK/4)× = [EK]4
holds if and only if N(ε) = −1. Here, N(ε) is the
norm of ε. When 2 does not split, there are several
real quadratic fields K = Q(

√
d) satisfying the con-

dition (iii) in Proposition 3, such as d = 2, 5, 13, 29
(etc.).

2. Proofs of Propositions 1 and 2. The
following assertion was shown in [3, Corollary 7].

Lemma 1. Let 	 be a prime number, and K a
number field. Assume that any tame cyclic extension
over K of degree 	 has a NIB. Then, the exponent of
the quotient group (OK/	)×/[EK]� divides (	−1)2/2
when 	 ≥ 3, and (OK/	)× = [EK]� when 	 = 2.

As in Section 1, let ζ� be a primitive 	-th root
of unity, and π� = ζ� − 1.

Proof of Proposition 1. Let 	 be an odd prime
number, and K a number field with ζ� ∈ K×. As-
sume that the condition (i) in Proposition 1 is satis-
fied. Let ρ1 and ρ2 be the 	-ranks of the finite abelian
groups (OK/	)× and [EK]�, respectively. Then, by
Lemma 1, we have ρ1 = ρ2. Let π�OK =

∏
i L

ei

i

be the prime decomposition of π�OK . Let n = [K :
Q(ζ�)], and fi be the relative degree of Li over Q(ζ�).
Clearly, we have

(OK/	)× = ⊕iAi with Ai = (OK/L(�−1)ei

i )×.

Let Bi be the subgroup of Ai consisting of classes x
with x ≡ 1 mod Lei

i . We see that Bi is of exponent
	, and that |Bi| = 	(�−2)eifi . Hence, we obtain

ρ1 ≥ (	− 2)
∑
i

eifi = (	− 2)n.

On the other hand, we have ρ2 ≤ (	− 1)n/2 by the
Dirichlet unit theorem. Therefore, the equality ρ1 =
ρ2 can not hold when 	 ≥ 5.

To show Proposition 2, we need several lemmas.
The following lemma is well known (cf. Wash-

ington [9, Exercises 9.2, 9.3]).
Lemma 2. Let 	 be a prime number, and K

a number field with ζ� ∈ K×. Then, for an element
a ∈ K× relatively prime to 	, the Kummer extension
K(a1/�)/K is tame if and only if a ≡ u� mod π�� for
some u ∈ OK .

The following lemma was shown in [5], for which
see also [6, Lemma 3]. (We can derive this also from
[2, Theorem 2.1].)

Lemma 3. Let 	, K be as in Lemma 2. Let
a be an integer of K relatively prime to 	 such that
the principal integral ideal aOK is square free. Then,

the Kummer extension K(a1/�)/K has a NIB if and
only if a ≡ ε� mod π�� for some unit ε ∈ EK .

Lemma 4. Let 	, K be as in Proposition 2.
Assume that the condition (i) in Proposition 2 is sat-
isfied. Then, (OK/π�)× is generated by the classes
containing units of K.

Proof. When 	 = 2, the assertion is contained
in Lemma 1. So, let 	 �= 2. Let u be an integer of
K relatively prime to 	. By the Chebotarev density
theorem, there exists a principal prime ideal L =
aOK such that a ≡ u� mod π��. Because of this con-
gruence, the Kummer extension L = K(a1/�) over
K is tame by Lemma 2. Hence, L/K has a NIB by
the assumption. Then, we have a ≡ ε� mod π�� for
some unit ε ∈ EK by Lemma 3. This implies u ≡
ε mod π�. Hence, we obtain the assertion.

To show Proposition 2, we need one more
lemma, which is a part of [2, Theorem 2.1] mentioned
in Section 1. Let 	, K be as in Lemma 1, and let A

be an 	-th power free integral ideal of OK . We can
uniquely write

(1) A =
�−1∏
i=1

Ai
i

for some square free integral ideals Ai of OK rela-
tively prime to each other. As in [2], we define the
associated ideals Bj by

(2) Bj =
�−1∏
i=1

Ai
[ij/�] (0 ≤ j ≤ 	− 1).

Here, [x] is the largest integer ≤ x. By the definition,
we have B0 = B1 = OK .

Lemma 5. Let 	, K be as in Lemma 2, and
L/K a tame Kummer extension of degree 	. As-
sume that L/K has a NIB. Then, we can write L =
K(a1/�) for some nonzero integer a of K such that
the principal integral ideal aOK is 	-th power free
and the associated ideals Bj of aOK defined by (1),
(2) are principal.

Proof of Proposition 2. As we have mentioned
in Remark 1 (1), it suffices to show the implication
(i)⇒ (ii). Let 	, K be as in Proposition 2, and as-
sume that the condition (i) is satisfied. First, let 	 =
2. Then, we have (OK/2)× = [EK]2 by Lemma 1.
We also have hK = 1 by Mann [7, p. 171] (cf. also
[3, p. 165]). So, let 	 = 3. Let u be an integer of K
relatively prime to 	. By Lemma 4, u ≡ ε mod π�
for some unit ε ∈ EK . Hence, u� ≡ ε� mod π��. As 	
divides π��, this implies that the exponent of the quo-
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tient (OK/	)×/[EK]� divides 	. Therefore, it follows
from Lemma 1 that (OK/	)× = [EK]�. It remains
to show that hK = 1. Let C be an arbitrary ideal
class of K. We show that C = 1. Let C′

1 , C2 be
square free integral ideals of K relatively prime to
	 such that C′

1 ∈ C2, C2 ∈ C−1 and (C′
1, C2) = 1.

We have C′
1C2

2 = c′OK for some integer c′. By the
Chebotarev density theorem, there exists a principal
prime ideal L = c′′OK such that c′c′′ ≡ 1 mod π��

and (c′, c′′) = 1. Put C1 = C′
1c

′′ and c = c′c′′. Then,
we have C1C2

2 = cOK . Put L = K(c1/�). The ex-
tension L/K is of degree 	 as L ‖ c, and is tame by
Lemma 2 as c ≡ 1 mod π��. Then, as we are assum-
ing (i), L/K has a NIB. Hence, there exists an integer
a of K with L = K(a1/�) satisfying the conditions in
Lemma 5. We have

(3) a = csx�

for some 1 ≤ s ≤ 	− 1 = 2 and x ∈ K×. Let Ai, Bj

be the integral ideals of K defined by (1), (2) for the
	-th power free integral ideal aOK . Then, the ideals
Bj are principal by Lemma 5.

First, let s = 1. It follows from (3) that A1A2
2 =

C1C2
2(xOK)�. Then, we see that A1 = C1, A2 =

C2 since Ai, Ci are square free integral ideals and
(A1, A2) = (C1, C2) = OK . Therefore, we obtain
B2 = C2 by (2). Hence, the ideal class C containing
C−1

2 is trivial. Next, let s = 2. Then, it follows from
(3) that A1A2

2 = C2C1
2(xC2)�. From this, we see

that (A1 = C2, A2 = C1, and) xC2 = OK . Therefore,
we obtain C = 1.

3. Proof of Proposition 3.
Proof of (iii)⇒ (i). Assume that hK = 1 and

that (OK/4)× = [EK]4. For each prime ideal L of K
with L � 2, we can choose an integer ωL ∈ OK such
that L = ωLOK and ωL ≡ 1 mod 4 by the assump-
tion. Let L = K(

√
a1, . . . ,

√
ar) be a tame Kummer

extension with aj ∈ OK . As L/K is tame, we may as
well assume that the integers aj are relatively prime
to 2. We can write

aj = εj
∏
L|aj

ω
e
(j)
L

L with εj ∈ EK , e
(j)
L ≥ 1,

where L runs over the prime ideals of K dividing aj.
Hence, we have

L ⊆ L̃ = K(
√
εj ,

√
ωL

∣∣ 1 ≤ j ≤ r, L|a1 · · ·ar).
As L/K is tame, aj ≡ u2

j mod 4 for some uj ∈ OK by
Lemma 2. Then, it follows that εj ≡ u2

j mod 4 from
the choice of ωL. Hence, the extension K(√εj)/K

is unramified (at all finite primes), and K(
√
ωL)/K

is tame. Therefore, these extensions have a NIB by
Proposition 2. Now, since the discriminants of these
extensions over K are relatively prime to each other,
we see that the extension L̃/K has a NIB. This is
because of a classical theorem on rings of integers in
Fröhlich and Taylor [1, III, (2.13)]. Therefore, L/K
has a NIB as L ⊆ L̃.

Proof of (ii)⇒ (iii). Assume that the condi-
tion (ii) is satisfied. Then, we have hK = 1 and
(OK/2)× = [EK]2 by Proposition 2. Let z be an in-
teger of K relatively prime to 2. It suffices to show
that [z]4 ∈ [EK ]4. Here, [z]4 is the class in (OK/4)×

represented by z. To show [z]4 ∈ [EK]4, we may as
well assume that z ≡ 1 mod 2. This is because z ≡
ε mod 2 for some unit ε ∈ EK as (OK/2)× = [EK]2.

By the Chebotarev density theorem, there exist
integers α, β, γ of K such that αOK, βOK , γOK are
prime ideals relatively prime to each other and

α ≡ β ≡ γ ≡ z mod 4.

Then, as z ≡ 1 mod 2, we have

(4) αβ ≡ βγ ≡ γα ≡ 1 mod 4.

Put

L = K(
√
αβ,

√
βγ,

√
γα),

and G = Gal(L/K). Then, L/K is a tame Kummer
extension by (4) and Lemma 2, and G is isomorphic
to Z/2⊕Z/2. Because of the condition (ii), there ex-
ists an integer ω ∈ OL such that OL = OK [G]ω. Let
χ0 be the trivial character of G, and let χ1, χ2, χ3

be the characters of G whose kernels correspond to
K(
√
αβ), K(

√
βγ), K(

√
γα) by Galois theory, re-

spectively. For 0 ≤ i ≤ 3, let O(i)
L be the additive

group of integers x ∈ OL such that xg = χi(g)x for
all x ∈ G, and let

(5) ωi =
∑
g∈G

ωgχi(g)

be the resolvent of ω and χi. We see that ωi ∈ O(i)
L ,

and that O(i)
L = OKωi from OL = OK [G]ω. As

O(0)
L = OK , we have ε0 = ω0 ∈ EK . We have

√
αβ ∈

O(1)
L , and hence

√
αβ = xω1 for some integer x ∈

OK . We see that x is a unit ofK because the integral
ideal αβOK is square free. Hence, ω1 = ε1

√
αβ for

some unit ε1 ∈ EK . Similarly, we have ω2 = ε2
√
βγ

and ω3 = ε3
√
γα for some units ε2, ε3 ∈ EK . From

(5), we see that
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ω =
1
4

3∑
i=0

ωi

=
1
4

(
ε0 + ε1

√
αβ + ε2

√
βγ + ε3

√
γα

)
.

Let N = K(
√
γα). We see that the norm NL/N (ω)

equals

1
2

{
ε20 − ε21αβ − ε22βγ + ε23γα

8

+
ε0ε3 − βε1ε2

4
· √γα

}
.

As ω ∈ OL, this is an integer of N . Using (4), we see
that ON is freely generated by 1 and (1 +

√
γα)/2

over OK . Therefore, it follows from the above that

ε0ε3 − zε1ε2 ≡ ε0ε3 − βε1ε2 ≡ 0 mod 4.

Hence, we obtain [z]4 ∈ [EK ]4.
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