Note on the ring of integers of a Kummer extension of prime degree. V

By Humio Ichimura

Department of Mathematics, Faculty of Sciences, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027 (Communicated by Shokichi Iyanaga, M. J. A., June 11, 2002)

Abstract: Let ℓ be a prime number, and K a number field with $\zeta_{\ell} \in K^{\times}$. We give a simple necessary and sufficient condition for *all* tame Kummer extensions over K of degree ℓ to have a relative normal integral basis. The result is given in terms of the class number and the group of units of K.

Key words: Normal integral basis; Kummer extensions of prime degree.

1. Introduction. Let K be a number field. In this note, we give a simple necessary and sufficient condition for all tame Kummer extensions over K of a given prime degree to have a relative normal integral basis (NIB for short). Let \mathcal{O}_K be the ring of integers of K, and h_K the class number of K. For a commutative ring R with identity, we denote by R^{\times} the group of units of R. In particular, $E_K = \mathcal{O}_K^{\times}$ is the group of units of K. For an element $a \in R$, we write R/a = R/aR for brevity. For an integer $n \geq 2$, we denote by $[E_K]_n$ the subgroup of the multiplicative group $(\mathcal{O}_K/n)^{\times}$ generated by the classes containing units of K. For a prime number $\ell,$ let ζ_{ℓ} be a primitive ℓ -th root of unity. We say that a finite extension of a number field is tame when it is at most tamely ramified at all finite primes.

For a prime number ℓ and a number field K, Greither *et al.* [3, Corollary 7] gave a necessary condition for all tame cyclic extensions over K of degree ℓ to have a NIB. The following is a consequence of this result.

Proposition 1. Let ℓ be a prime number with $\ell \geq 5$. Then, there exists no number field K with $\zeta_{\ell} \in K^{\times}$ satisfying the following condition:

(i) Any tame Kummer extension over K of degree ℓ has a NIB.

When $\ell = 2, 3$, the following assertions hold.

Proposition 2. Let $\ell = 2$ or 3, and let K be a number field with $\zeta_{\ell} \in K^{\times}$. The following conditions are equivalent:

(i) Any tame Kummer extension over K of degree ℓ has a NIB.

(ii) We have
$$h_K = 1$$
 and $(\mathcal{O}_K/\ell)^{\times} = [E_K]_{\ell}$.

Proposition 3. Let $\ell = 2$, and K a number field. The following conditions are equivalent:

(i) Any tame Kummer extension over K of exponent 2 has a NIB.

(ii) Any tame Kummer extension over K of exponent 2 and of degree dividing 4 has a NIB.

(iii) We have $h_K = 1$ and $(\mathcal{O}_K/4)^{\times} = [E_K]_4$.

Remark. (1) In [2, Theorem 2.1], Gómez Ayala gave a necessary and sufficient condition for a tame Kummer extension of prime degree to have a NIB. The implication (ii) \Rightarrow (i) in Proposition 2 is an immediate consequence of this theorem. When $\ell = 2$, (i) \Rightarrow (ii) is shown in [3]. So, the new part in Proposition 2 is the implication (i) \Rightarrow (ii) for $\ell =$ 3. (2) When $\ell = 3$, we could not obtain an assertion corresponding to Proposition 3 by the method of this note.

Example 1. Let $\ell = 3$. The condition (ii) in Proposition 2 is satisfied when $K = \mathbf{Q}(\sqrt{-3})$ as is shown in [2, p. 110]. It is known by Uchida [8] that among biquadratic fields $K = \mathbf{Q}(\sqrt{-3}, \sqrt{d})$ with $d \in$ \mathbf{Z} , there are 13 fields with $h_K = 1$. (For this, confer also Yamamura [10].) Among these 13 K's, we see that the condition (ii) in Proposition 2 is satisfied when and only when d = -1, -2, -11. To check the condition $(\mathcal{O}_K/3)^{\times} = [E_K]_3$, we have to know a fundamental unit of K. For this, we have used some results of Hasse [4, Section 26] on unit index of imaginary abelian fields.

Example 2. The condition $(\mathcal{O}_K/4)^{\times} = [E_K]_4$ in Proposition 3 is satisfied only when K is totally real. This is shown in a way similar to the proof of Proposition 1 in Section 2. Let K be a real quadratic field with $h_K = 1$, and ϵ a fundamental unit of K.

¹⁹⁹¹ Mathematics Subject Classification. 11R33.

When 2 splits in K, we easily see that the condition $(\mathcal{O}_K/2)^{\times} = [E_K]_2$ holds, and that $(\mathcal{O}_K/4)^{\times} = [E_K]_4$ holds if and only if $N(\epsilon) = -1$. Here, $N(\epsilon)$ is the norm of ϵ . When 2 does not split, there are several real quadratic fields $K = \mathbf{Q}(\sqrt{d})$ satisfying the condition (iii) in Proposition 3, such as d = 2, 5, 13, 29 (etc.).

2. Proofs of Propositions 1 and 2. The following assertion was shown in [3, Corollary 7].

Lemma 1. Let ℓ be a prime number, and K a number field. Assume that any tame cyclic extension over K of degree ℓ has a NIB. Then, the exponent of the quotient group $(\mathcal{O}_K/\ell)^{\times}/[E_K]_{\ell}$ divides $(\ell-1)^2/2$ when $\ell \geq 3$, and $(\mathcal{O}_K/\ell)^{\times} = [E_K]_{\ell}$ when $\ell = 2$.

As in Section 1, let ζ_{ℓ} be a primitive ℓ -th root of unity, and $\pi_{\ell} = \zeta_{\ell} - 1$.

Proof of Proposition 1. Let ℓ be an odd prime number, and K a number field with $\zeta_{\ell} \in K^{\times}$. Assume that the condition (i) in Proposition 1 is satisfied. Let ρ_1 and ρ_2 be the ℓ -ranks of the finite abelian groups $(\mathcal{O}_K/\ell)^{\times}$ and $[E_K]_{\ell}$, respectively. Then, by Lemma 1, we have $\rho_1 = \rho_2$. Let $\pi_{\ell}\mathcal{O}_K = \prod_i \mathfrak{L}_i^{e_i}$ be the prime decomposition of $\pi_{\ell}\mathcal{O}_K$. Let n = [K : $Q(\zeta_{\ell})]$, and f_i be the relative degree of \mathfrak{L}_i over $Q(\zeta_{\ell})$. Clearly, we have

$$(\mathcal{O}_K/\ell)^{\times} = \bigoplus_i A_i \text{ with } A_i = (\mathcal{O}_K/\mathfrak{L}_i^{(\ell-1)e_i})^{\times}.$$

Let B_i be the subgroup of A_i consisting of classes \overline{x} with $x \equiv 1 \mod \mathfrak{L}_i^{e_i}$. We see that B_i is of exponent ℓ , and that $|B_i| = \ell^{(\ell-2)e_if_i}$. Hence, we obtain

$$\rho_1 \ge (\ell - 2) \sum_i e_i f_i = (\ell - 2) n.$$

On the other hand, we have $\rho_2 \leq (\ell - 1)n/2$ by the Dirichlet unit theorem. Therefore, the equality $\rho_1 = \rho_2$ can not hold when $\ell \geq 5$.

To show Proposition 2, we need several lemmas.

The following lemma is well known (cf. Washington [9, Exercises 9.2, 9.3]).

Lemma 2. Let ℓ be a prime number, and Ka number field with $\zeta_{\ell} \in K^{\times}$. Then, for an element $a \in K^{\times}$ relatively prime to ℓ , the Kummer extension $K(a^{1/\ell})/K$ is tame if and only if $a \equiv u^{\ell} \mod \pi_{\ell}^{\ell}$ for some $u \in \mathcal{O}_K$.

The following lemma was shown in [5], for which see also [6, Lemma 3]. (We can derive this also from [2, Theorem 2.1].)

Lemma 3. Let ℓ , K be as in Lemma 2. Let a be an integer of K relatively prime to ℓ such that the principal integral ideal $a\mathcal{O}_K$ is square free. Then, the Kummer extension $K(a^{1/\ell})/K$ has a NIB if and only if $a \equiv \epsilon^{\ell} \mod \pi_{\ell}^{\ell}$ for some unit $\epsilon \in E_K$.

Lemma 4. Let ℓ , K be as in Proposition 2. Assume that the condition (i) in Proposition 2 is satisfied. Then, $(\mathcal{O}_K/\pi_\ell)^{\times}$ is generated by the classes containing units of K.

Proof. When $\ell = 2$, the assertion is contained in Lemma 1. So, let $\ell \neq 2$. Let u be an integer of K relatively prime to ℓ . By the Chebotarev density theorem, there exists a principal prime ideal $\mathfrak{L} = a\mathcal{O}_K$ such that $a \equiv u^{\ell} \mod \pi_{\ell}^{\ell}$. Because of this congruence, the Kummer extension $L = K(a^{1/\ell})$ over K is tame by Lemma 2. Hence, L/K has a NIB by the assumption. Then, we have $a \equiv \epsilon^{\ell} \mod \pi_{\ell}^{\ell}$ for some unit $\epsilon \in E_K$ by Lemma 3. This implies $u \equiv$ $\epsilon \mod \pi_{\ell}$. Hence, we obtain the assertion.

To show Proposition 2, we need one more lemma, which is a part of [2, Theorem 2.1] mentioned in Section 1. Let ℓ , K be as in Lemma 1, and let \mathfrak{A} be an ℓ -th power free integral ideal of \mathcal{O}_K . We can uniquely write

(1)
$$\mathfrak{A} = \prod_{i=1}^{\ell-1} \mathfrak{A}_i{}^i$$

for some square free integral ideals \mathfrak{A}_i of \mathcal{O}_K relatively prime to each other. As in [2], we define the associated ideals \mathfrak{B}_i by

(2)
$$\mathfrak{B}_j = \prod_{i=1}^{\ell-1} \mathfrak{A}_i^{[ij/\ell]} \quad (0 \le j \le \ell-1).$$

Here, [x] is the largest integer $\leq x$. By the definition, we have $\mathfrak{B}_0 = \mathfrak{B}_1 = \mathcal{O}_K$.

Lemma 5. Let ℓ , K be as in Lemma 2, and L/K a tame Kummer extension of degree ℓ . Assume that L/K has a NIB. Then, we can write $L = K(a^{1/\ell})$ for some nonzero integer a of K such that the principal integral ideal $a\mathcal{O}_K$ is ℓ -th power free and the associated ideals \mathfrak{B}_j of $a\mathcal{O}_K$ defined by (1), (2) are principal.

Proof of Proposition 2. As we have mentioned in Remark 1 (1), it suffices to show the implication (i) \Rightarrow (ii). Let ℓ , K be as in Proposition 2, and assume that the condition (i) is satisfied. First, let $\ell =$ 2. Then, we have $(\mathcal{O}_K/2)^{\times} = [E_K]_2$ by Lemma 1. We also have $h_K = 1$ by Mann [7, p. 171] (cf. also [3, p. 165]). So, let $\ell = 3$. Let u be an integer of Krelatively prime to ℓ . By Lemma 4, $u \equiv \epsilon \mod \pi_{\ell}$ for some unit $\epsilon \in E_K$. Hence, $u^{\ell} \equiv \epsilon^{\ell} \mod \pi_{\ell}^{\ell}$. As ℓ divides π_{ℓ}^{ℓ} , this implies that the exponent of the quotient $(\mathcal{O}_K/\ell)^{\times}/[E_K]_\ell$ divides ℓ . Therefore, it follows from Lemma 1 that $(\mathcal{O}_K/\ell)^{\times} = [E_K]_\ell$. It remains to show that $h_K = 1$. Let C be an arbitrary ideal class of K. We show that C = 1. Let $\mathfrak{C}'_1, \mathfrak{C}_2$ be square free integral ideals of K relatively prime to ℓ such that $\mathfrak{C}'_1 \in C^2, \mathfrak{C}_2 \in C^{-1}$ and $(\mathfrak{C}'_1, \mathfrak{C}_2) = 1$. We have $\mathfrak{C}'_1\mathfrak{C}_2^2 = c'\mathcal{O}_K$ for some integer c'. By the Chebotarev density theorem, there exists a principal prime ideal $\mathfrak{L} = c''\mathcal{O}_K$ such that $c'c'' \equiv 1 \mod \pi_\ell^{\ell}$ and (c', c'') = 1. Put $\mathfrak{C}_1 = \mathfrak{C}'_1c''$ and c = c'c''. Then, we have $\mathfrak{C}_1\mathfrak{C}_2^2 = c\mathcal{O}_K$. Put $L = K(c^{1/\ell})$. The extension L/K is of degree ℓ as $\mathfrak{L} \parallel c$, and is tame by Lemma 2 as $c \equiv 1 \mod \pi_\ell^{\ell}$. Then, as we are assuming (i), L/K has a NIB. Hence, there exists an integer a of K with $L = K(a^{1/\ell})$ satisfying the conditions in Lemma 5. We have

(3)
$$a = c^s x^\ell$$

for some $1 \leq s \leq \ell - 1 = 2$ and $x \in K^{\times}$. Let $\mathfrak{A}_i, \mathfrak{B}_j$ be the integral ideals of K defined by (1), (2) for the ℓ -th power free integral ideal $a\mathcal{O}_K$. Then, the ideals \mathfrak{B}_j are principal by Lemma 5.

First, let s = 1. It follows from (3) that $\mathfrak{A}_1\mathfrak{A}_2^2 = \mathfrak{C}_1\mathfrak{C}_2^2(x\mathcal{O}_K)^\ell$. Then, we see that $\mathfrak{A}_1 = \mathfrak{C}_1$, $\mathfrak{A}_2 = \mathfrak{C}_2$ since \mathfrak{A}_i , \mathfrak{C}_i are square free integral ideals and $(\mathfrak{A}_1, \mathfrak{A}_2) = (\mathfrak{C}_1, \mathfrak{C}_2) = \mathcal{O}_K$. Therefore, we obtain $\mathfrak{B}_2 = \mathfrak{C}_2$ by (2). Hence, the ideal class C containing \mathfrak{C}_2^{-1} is trivial. Next, let s = 2. Then, it follows from (3) that $\mathfrak{A}_1\mathfrak{A}_2^2 = \mathfrak{C}_2\mathfrak{C}_1^2(x\mathfrak{C}_2)^\ell$. From this, we see that $(\mathfrak{A}_1 = \mathfrak{C}_2, \mathfrak{A}_2 = \mathfrak{C}_1, \text{ and }) x\mathfrak{C}_2 = \mathcal{O}_K$. Therefore, we obtain C = 1.

3. Proof of Proposition 3.

Proof of (iii) \Rightarrow (i). Assume that $h_K = 1$ and that $(\mathcal{O}_K/4)^{\times} = [E_K]_4$. For each prime ideal \mathfrak{L} of Kwith $\mathfrak{L} \nmid 2$, we can choose an integer $\omega_{\mathfrak{L}} \in \mathcal{O}_K$ such that $\mathfrak{L} = \omega_{\mathfrak{L}} \mathcal{O}_K$ and $\omega_{\mathfrak{L}} \equiv 1 \mod 4$ by the assumption. Let $L = K(\sqrt{a_1}, \ldots, \sqrt{a_r})$ be a tame Kummer extension with $a_j \in \mathcal{O}_K$. As L/K is tame, we may as well assume that the integers a_j are relatively prime to 2. We can write

$$a_j = \epsilon_j \prod_{\mathfrak{L}|a_j} \omega_{\mathfrak{L}}^{e_{\mathfrak{L}}^{(j)}}$$
 with $\epsilon_j \in E_K, \ e_{\mathfrak{L}}^{(j)} \ge 1$,

where \mathfrak{L} runs over the prime ideals of K dividing a_j . Hence, we have

$$L \subseteq \widetilde{L} = K(\sqrt{\epsilon_j}, \sqrt{\omega_{\mathfrak{L}}} \mid 1 \le j \le r, \mathfrak{L} \mid a_1 \cdots a_r).$$

As L/K is tame, $a_j \equiv u_j^2 \mod 4$ for some $u_j \in \mathcal{O}_K$ by Lemma 2. Then, it follows that $\epsilon_j \equiv u_j^2 \mod 4$ from the choice of $\omega_{\mathfrak{L}}$. Hence, the extension $K(\sqrt{\epsilon_j})/K$ is unramified (at all finite primes), and $K(\sqrt{\omega_{\mathfrak{L}}})/K$ is tame. Therefore, these extensions have a NIB by Proposition 2. Now, since the discriminants of these extensions over K are relatively prime to each other, we see that the extension \tilde{L}/K has a NIB. This is because of a classical theorem on rings of integers in Fröhlich and Taylor [1, III, (2.13)]. Therefore, L/Khas a NIB as $L \subseteq \tilde{L}$.

Proof of (ii) \Rightarrow (iii). Assume that the condition (ii) is satisfied. Then, we have $h_K = 1$ and $(\mathcal{O}_K/2)^{\times} = [E_K]_2$ by Proposition 2. Let z be an integer of K relatively prime to 2. It suffices to show that $[z]_4 \in [E_K]_4$. Here, $[z]_4$ is the class in $(\mathcal{O}_K/4)^{\times}$ represented by z. To show $[z]_4 \in [E_K]_4$, we may as well assume that $z \equiv 1 \mod 2$. This is because $z \equiv$ $\epsilon \mod 2$ for some unit $\epsilon \in E_K$ as $(\mathcal{O}_K/2)^{\times} = [E_K]_2$.

By the Chebotarev density theorem, there exist integers α , β , γ of K such that $\alpha \mathcal{O}_K$, $\beta \mathcal{O}_K$, $\gamma \mathcal{O}_K$ are prime ideals relatively prime to each other and

$$\alpha \equiv \beta \equiv \gamma \equiv z \bmod 4.$$

Then, as $z \equiv 1 \mod 2$, we have

(4)
$$\alpha\beta \equiv \beta\gamma \equiv \gamma\alpha \equiv 1 \mod 4.$$

Put

$$L = K(\sqrt{\alpha\beta}, \sqrt{\beta\gamma}, \sqrt{\gamma\alpha}),$$

and $G = \operatorname{Gal}(L/K)$. Then, L/K is a tame Kummer extension by (4) and Lemma 2, and G is isomorphic to $\mathbb{Z}/2 \oplus \mathbb{Z}/2$. Because of the condition (ii), there exists an integer $\omega \in \mathcal{O}_L$ such that $\mathcal{O}_L = \mathcal{O}_K[G]\omega$. Let χ_0 be the trivial character of G, and let χ_1, χ_2, χ_3 be the characters of G whose kernels correspond to $K(\sqrt{\alpha\beta}), K(\sqrt{\beta\gamma}), K(\sqrt{\gamma\alpha})$ by Galois theory, respectively. For $0 \leq i \leq 3$, let $\mathcal{O}_L^{(i)}$ be the additive group of integers $x \in \mathcal{O}_L$ such that $x^g = \chi_i(g)x$ for all $x \in G$, and let

(5)
$$\omega_i = \sum_{g \in G} \omega^g \chi_i(g)$$

be the resolvent of ω and χ_i . We see that $\omega_i \in \mathcal{O}_L^{(i)}$, and that $\mathcal{O}_L^{(i)} = \mathcal{O}_K \omega_i$ from $\mathcal{O}_L = \mathcal{O}_K[G]\omega$. As $\mathcal{O}_L^{(0)} = \mathcal{O}_K$, we have $\epsilon_0 = \omega_0 \in E_K$. We have $\sqrt{\alpha\beta} \in \mathcal{O}_L^{(1)}$, and hence $\sqrt{\alpha\beta} = x\omega_1$ for some integer $x \in \mathcal{O}_K$. We see that x is a unit of K because the integral ideal $\alpha\beta\mathcal{O}_K$ is square free. Hence, $\omega_1 = \epsilon_1\sqrt{\alpha\beta}$ for some unit $\epsilon_1 \in E_K$. Similarly, we have $\omega_2 = \epsilon_2\sqrt{\beta\gamma}$ and $\omega_3 = \epsilon_3\sqrt{\gamma\alpha}$ for some units $\epsilon_2, \epsilon_3 \in E_K$. From (5), we see that

$$\omega = \frac{1}{4} \sum_{i=0}^{3} \omega_i$$
$$= \frac{1}{4} \left(\epsilon_0 + \epsilon_1 \sqrt{\alpha \beta} + \epsilon_2 \sqrt{\beta \gamma} + \epsilon_3 \sqrt{\gamma \alpha} \right).$$

Let $N = K(\sqrt{\gamma \alpha})$. We see that the norm $N_{L/N}(\omega)$ equals

$$\frac{1}{2} \left\{ \frac{\epsilon_0^2 - \epsilon_1^2 \alpha \beta - \epsilon_2^2 \beta \gamma + \epsilon_3^2 \gamma \alpha}{8} + \frac{\epsilon_0 \epsilon_3 - \beta \epsilon_1 \epsilon_2}{4} \cdot \sqrt{\gamma \alpha} \right\}.$$

As $\omega \in \mathcal{O}_L$, this is an integer of N. Using (4), we see that \mathcal{O}_N is freely generated by 1 and $(1 + \sqrt{\gamma \alpha})/2$ over \mathcal{O}_K . Therefore, it follows from the above that

$$\epsilon_0\epsilon_3 - z\epsilon_1\epsilon_2 \equiv \epsilon_0\epsilon_3 - \beta\epsilon_1\epsilon_2 \equiv 0 \bmod 4.$$

Hence, we obtain $[z]_4 \in [E_K]_4$.

Acknowledgements. The author was partially supported by Grant-in-Aid for Scientific Research (C) (No. 13640036), the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

 Fröhlich, A., and Taylor, M. J.: Algebraic Number Theory. Cambridge Univ. Press, Cambridge (1991).

- [2] Gómez Ayala, E. J.: Bases normales d'entiers dans les extensions de Kummer de degré premier. J. Théor. Nombres Bordeaux, 6, 95–116 (1994).
- [3] Greither, G., Replogle, D., Rubin, K., and Srivastav, A.: Swan modules and Hilbert-Speiser number fields. J. Number Theory, **79**, 164–173 (1999).
- [4] Hasse, H.: Über die Klässenzahl abelscher Zahlkörper. Akademie-Verlag, Berlin (1952).
- [5] Ichimura, H.: Note on the ring of integers of a Kummer extension of prime degree, I (2000). (Preprint).
- [6] Ichimura, H.: On a normal integral basis problem over cyclotomic Z_p-extensions, II. Number Theory. (To appear).
- [7] Mann, H. B.: On integral basis. Proc. Amer. Math. Soc., 9, 167–172 (1958).
- Uchida, K.: Imaginary abelian number fields of degree 2^m with class number one. Class Numbers and Fundamental Units of Algebraic Number Fields (eds. Yamamoto, Y., and Yokoi, H.). Proc. Internat. Conf., Katata, Japan, Nagoya Univ., Nagoya, pp. 156–170 (1986).
- [9] Washington, L. C.: Introduction to Cyclotomic Fields. 2nd ed., Springer, Berlin-Heidelberg-New York (1996).
- [10] Yamamura, K.: The determination of imaginary abelian number fields with class number one. Math. Comp., 62, 899–921 (1994).

No. 6]