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Abstract: A Laplacian comparison theorem is given. As applications we show a volume
comparison theorem and a criterion for the hyperbolicity of Riemannian manifolds.
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1. Introduction. Let M be a smooth con-
nected complete Riemannian n-manifold, n ≥ 2,
without boundary. Let P be a fixed point in M and
define h(x) = d(x, P) for all x ∈ M , where d denotes
the geodesic distance. Let KM and RicM denote the
sectional curvature and the Ricci curvature of M , re-
spectively. Let 0 < l ≤ ∞ and γ : [0, l) → M be a
minimal geodesic with γ(0) = P, |γ′(0)| = 1. Let
k, r : [0,∞) → R be two continuous functions. We
assume that k satisfies

KM (γ′(t), X) ≤ k(t),(1)

for ∀t ∈ (0, l), ∀X ∈ Mγ(t), X ⊥ γ′(t). Let f be a
solution of{

f ′′ + k(t)f = 0, f(t) > 0, (0 < t < l),
f(0) = 0, f ′(0) = 1.

(2)

The Hessian comparison theorem (cf. Kasue [6,
Lemma 2.18]) shows that

∆h(γ(t)) ≥ (n− 1)
f ′(t)
f(t)

, ∀t ∈ (0, l).(3)

The purpose of this note is to improve the above
inequality. We see from (1) that

RicM (γ′(t), γ′(t)) ≤ (n− 1)k(t).

We impose the assumption that

RicM (γ′(t), γ′(t)) ≤ r(t) ≤ (n− 1)k(t),(4)

for ∀t ∈ (0, l). Let f1 be a solution of{
f ′′1 + {r(t)− (n− 2)k(t)}f1 = 0, (0 < t < l),
f1(0) = 0, f ′1(0) = 1.

(5)

Our main result is the following
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Theorem 1. If f ′(t) ≥ 0 on (0, l), then

f1(t) ≥ f(t),
f ′1(t)
f1(t)

≥ f ′(t)
f(t)

, ∀t ∈ (0, l).(6)

∆h(γ(t)) ≥ (n− 2)
f ′(t)
f(t)

+
f ′1(t)
f1(t)

, ∀t ∈ (0, l).(7)

Theorem 1 also generalizes the inequality of
Borbély ([1, Lemma 2]), which is the motivation of
this note. As applications of Theorem 1 we obtain
the volume comparison theorem – Theorem 2 – and
a criterion for the hyperbolicity of Riemannian man-
ifolds, i.e., the existence of the Green’s function of
Laplacian – Theorem 3 and Theorem 4.

2. Proof of Theorem 1. We need the fol-
lowing lemma.

Lemma 1 ([1, Proposition 4]). Let n ∈ N,
a ≥ 0, and b ≥ na2. Let S be the set{

(x1, . . . , xn) ∈ Rn

∣∣∣∣ a ≤ x1 ≤ · · · ≤ xn,
n∑

j=1

x2
j ≥ b

}
.

Define f : S → R by f(x1, . . . , xn) = x1 + · · · + xn.
Then

min f(S) ≥ (n− 1)a + {b− (n− 1)a2}1/2.

We will follow Chavel’s notation [2, pp. 63–67]
as in [1] and [8]. Let v = γ′(0), M⊥

t denote the
orthogonal complement of γ′(t) in Mγ(t), and define
R(t) : M⊥

t → M⊥
t by R(t)X = R(γ′(t), X)γ′(t),

where R( , ) is the curvature tensor of M . Let τt :
Mp → Mγ(t) be the parallel translation along γ and
define R(t) : v⊥ → v⊥ by R(t)X = (τt)−1R(t)τt(X).
Let A be the solution of

A′′ +RA = 0 on (0, l), A(0) = 0, A′(0) = I.

Let gij be the components of the Riemannian metric
of M with respect to the normal coordinate system
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around P, U(t) = A′(t)A(t)−1, and define g(t, w) =
t2(n−1) det gij ◦ exp(tw). We note that U and R are
selfadjoint and that g,A, U , andR have the following
properties: √

g(t, v) = det A(t).(8)

U ′ + U2 +R = 0 on (0, l).(9)

trU(t) =
d

dt
log det A(t) = ∆h(γ(t)).(10)

trR(t) = RicM (γ′(t), γ′(t)).(11)

We see from Sturm’s comparison theorem that
f1(t) > 0 on (0, l). Let F (t) = f ′(t)/f(t) and F1(t) =
f ′1(t)/f1(t). Then the Riccati equations

F ′ + F 2 + k = 0, F ′1 + F 2
1 + r − (n− 2)k = 0

hold on (0, l). Since limt→+0(F1(t) − F (t)) = 0
we infer from [4, Theorem] that F1(t) ≥ F (t) on
(0, l), which implies f1(t) ≥ f(t) on (0, l) because
limt→+0 f1(t)/f(t) = 1. Let v(t) = trU(t) and
α1, . . . , αn−1 be the eigenvalues of U . From (9) we
have

v′ + α2
1 + · · ·+ α2

n−1 + trR = 0.

We see from [4, Theorem] that αj(t) ≥ F (t) ≥ 0
(1 ≤ j ≤ n− 1). Applying Lemma 1 we find that

v ≥ (n− 2)F +
√

α2
1 + · · ·+ α2

n−1 − (n− 2)F 2

= (n− 2)F +
√
−v′ − trR− (n− 2)F 2.

Let V = v − (n− 2)F . Then we have

V ′ + V 2 ≥ − trR+ (n− 2)k

≥ −r + (n− 2)k

= F ′1 + F 2
1 .

Since lim inft→+0(V (t) − F1(t)) ≥ 0 and V (t) +
F1(t) ≥ 0, we conclude from [4, Theorem] that
V (t) ≥ F1(t) on (0, l) and the proof of Theorem 1
is complete.

3. Applications. Let B(t) = {x ∈ M |
d(x, P) < t} and vol(B(t)) be the volume of B(t).
We have the following volume comparison theorem.

Theorem 2. Let f ′(t) ≥ 0 on (0, l) and T =
min{l, the injectivity radius of P}. Assume that k

and r satisfy

KM (γ′(t), X) ≤ k(t),

and

RicM (γ′(t), γ′(t)) ≤ r(t) ≤ (n− 1)k(t)

for any minimal geodesic γ : [0, T ) → M with γ(0) =
P and |γ′(0)| = 1, ∀t ∈ (0, T ), and ∀X ∈ Mγ(t) with
X ⊥ γ′(t). Then

(0, T ) 3 t 7−→ vol(B(t))
/ ∫ t

0

f1(s)f(s)n−2ds

is a nondecreasing function.
Proof. We will follow Chavel’s notation [3, p.

107]. Let gij be as in the proof of Theorem 1 and
Hn−1 be the (n− 1)-dimensional Hausdorff measure
of Mp. We define

F (t) = tn−1

∫
S(P;1)

√
det gij ◦ exp(tx)dHn−1(x)

for 0 < t < T . From Theorem 1 we have

tn−1
√

det gij ◦ exp(tx)
/

f1(t)f(t)n−2

≥ sn−1
√

det gij ◦ exp(sx)
/

f1(s)f(s)n−2

for 0 < s < t < T, x ∈ S(P; 1). Therefore F/f1f
n−2

is nondecreasing on (0, T ). The Theorem follows by
applying [3, Lemma 3.1].

We assume that l = ∞ in (2) and (5) and that
the injectivity radius of P is infinity. Let ωn−1 be
the volume of the unit (n − 1)-sphere in Rn. The
following theorem improves [5, Theorem 2.2] and [6,
Theorem 5.3] in case f ′ ≥ 0, whose condition holds
if k ≤ 0 or k ≥ 0.

Theorem 3. Let f ′(t) ≥ 0 on (0,∞). Assume
that k and r satisfy

KM (γ′(t), X) ≤ k(t),

and

RicM (γ′(t), γ′(t)) ≤ r(t) ≤ (n− 1)k(t)

for any geodesic γ : [0,∞) → M with γ(0) = P and
|γ′(0)| = 1, ∀t ∈ (0,∞), and ∀X ∈ Mγ(t) with X ⊥
γ′(t). If ∫ ∞

T

dt

f1(t)f(t)n−2
< ∞

for some T > 0, then the Green’s function G(x, P)
of M with a pole at P exists and satisfies

G(x, p) ≤ 1
ωn−1

∫ ∞

h(x)

dt

f1(t)f(t)n−2

for all x ∈ M , x 6= P.
Proof. We define

F (t) = ω−1
n−1

∫ ∞

t

f1(s)−1f(s)2−nds
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for t > 0. From Theorem 1 we see that

∆F (h(x)) = F ′′(h(x)) + F ′(h(x))∆h(x) ≤ 0

for x ∈ M \{P}. We can prove the theorem after the
proof of [6, Theorem 4.3].

Let 1 < α ≤ n be a constant. We define kα

and c2 as in [7]. The following theorem improves [7,
Theorem 1].

Theorem 4. Let f ′(t) ≥ 0 on (0,∞). Assume
that k and r satisfy

KM (γ′(t), X) ≤ k(t),

and

RicM (γ′(t), γ′(t)) ≤ r(t) ≤ (n− 1)k(t)

for any geodesic γ : [0,∞) → M with γ(0) = P and
|γ′(0)| = 1, ∀t ∈ (0,∞), and ∀X ∈ Mγ(t) with X ⊥
γ′(t). If∫ ∞

T

f1(t)−1/(α−1)f(t)(2−n)/(α−1)dt < ∞

for some T > 0, then the α-Green’s function G(x,P)
of M with a pole at P exists and satisfies

G(x, P) ≤ kαc2

∫ ∞

h(x)

f1(t)−1/(α−1)f(t)(2−n)/(α−1)dt

for all x ∈ M , x 6= P.
Proof. We define

F (t) =
∫ ∞

t

f1(s)−1/(α−1)f(s)(2−n)/(α−1)ds

for t > 0. Let u(x) = F (d(x)), then

div(|∇u|α−2∇u)

= −|F (d)|α−2(|F ′(d)|∆h− (α− 1)F ′′(d)) ≤ 0

in M \{P}. We can prove the theorem after the proof
of [7, Theorem 1].
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