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Abstract:
Key word:

A capital letter means a bounded linear operator
on a Hilbert space. Lowner-Heinz inequality asserts:

(x) A> B >0 ensures A% > B® for any « € [0, 1].

We obtain the following result in [1].
Theorem A. If A > B > 0, then for each
te€0,1] andp>1
(1) AMTt > [AB(AT BPAT) A5} G heir
holds for r >t and s > 1.
M. Uchiyama [3] shows the following interesting
extension of Theorem A.

Theorem B. If A > B > C > 0, then for
eacht € [0,1] andp > 1

(2) AYTt> [AS(BFCOPBT) A} moner

holds for r >t and s > 1.

Here we show a simplified proof of Theorem B
by using Theorem A itself. We need the following
result which is Lemma 1 in [1].

Lemma. Let X >0 and Y be invertible. For
any real number \

(YXY*P =YX (XY Y X)Xy ™,

Proof of Theorem B. PutY = A:B7= . As
At > B! by () since t € [0, 1], we have by the hy-
potheses
Y*Y =BZ A'BZ >1 and
(3) 1

= o051t € [0,1].

Put D = B2(BZ CPB7)*B%. As B> C > 0,
we have by Theorem A for r =t

(4) B > D
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Order preserving inequality.

Simplified proof of an order preserving operator inequality is given.

Then we have
By = {A*(BZT CPB7 ) As ) Goere

— (A*BZ DB= A?)*
= YD3(D?Y*YD?)*"'D3Y* by Lemma
<YyD:D'Dzy*
=YD\Y*
< A5B7 BB7 A? by (4)
— AT Bl-tA%
< ATAYPAT = A since AP > B by (%)

because the first inequality follows by (3) and (x)
since 1 — A € [0, 1], finally taking inverses of both
sides since A — 1 € [-1,0]. Whence A > B; > 0
holds, so that we obtain A+ > (A7 BflA%)%
for py > 1 and r; > 0 by Theorem A for t = 0 and
s = 1. We have only to put r1 = r —t > 0 and
p1 = (p—t)s+t>1to obtain (2). [l

We remark that although there are many proofs
of Theorem A, we cite one-page proof in [2, p. 133]
and a proof of Theorem B in this paper is given along
this one-page proof.

Acknowledgements. We would like to ex-
press our cordial thanks to Professor M. Uchiyama
for sending his nice paper [3] before its publication.

References
[ 1] Furuta, T.: Extension of the Furuta inequality and
Ando-Hiai log majorization. Linear Algebra and
Its Appl., 219, 139155 (1995).
[ 2] Furuta, T.: Invitation to Linear Operators. Taylor
& Francis, London (2001).
[ 3] Uchiyama, M.: Criteria for monotonicity of oper-

ator means. J. Math. Soc. Japan. (To appear).



