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Arithmetic forms of Selberg zeta functions with applications

to prime geodesic theorem

By Tsuneo Arakawa,∗) Shin-ya Koyama,∗∗) and Maki Nakasuji
∗∗)

(Communicated by Shokichi Iyanaga, m. j. a., Sept. 12, 2002)

Abstract: We obtain an arithmetic expression of the Selberg zeta function for cocompact
Fuchsian group defined via an indefinite division quaternion algebra over Q. As application to the
prime geodesic theorem, we prove certain uniformity of the distribution.
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1. Introduction. Let Γ be a discrete sub-
group of SL2(R) containing −12 with finite covol-
ume v(Γ\H), H denoting the upper half plane. The
Selberg zeta function attached to Γ is defined by

ZΓ(s) :=
∏
{P}Γ

∞∏
m=0

(
1 −N(P )−s−m

)
, (Re(s) > 1)

where {P }Γ runs through all primitive hyperbolic
conjugacy classes of Γ with tr(P ) > 2, and N(P ) :=
|ρ|2 with ρ the eigenvalue of P ∈ Γ such that |ρ| > 1.
The chief concern of this paper is to obtain an arith-
metic expression of the Selberg zeta function for co-
compact Γ defined via an indefinite division quater-
nion algebra over Q.

Let B = (a, b/Q) be an indefinite division
quaternion algebra over Q with a and b positive in-
tegers which are relatively prime and squarefree. We
write a typical element of B in the form

q = q0 + q1
√
a + q2

√
b+ q3

√
a
√
b,

where qi ∈ Q (i = 0, 1, 2, 3). We denote by q 
−→
q the canonical involution of B and put n(q) = qq̄,
tr(q) = q+ q̄. We choose and fix a maximal order O
of B. Let B1 (resp. O1) be the group consisting of
all elements q of B (resp, O) with n(q) = 1. Since
the R-algebra B⊗Q R is isomorphic to M2(R), B1

is injectively embedded into SL2(R) by this isomor-
phism. The unit group O1 can be identified with a
cocompact discrete subgroup ΓO of SL2(R) which is
the image of the following injection:

2000 Mathematics Subject Classification. Primary 11R52;
Secondary 11M72, 58E10.

∗) Department of Mathematics, Rikkyo University, 3-34-1,
Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501.

∗∗) Department of Mathematics, Keio University, 3-14-1,

Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522.

(1.1)

O1 ↪→ SL2(R)

q 
−→
(

q0 + q1
√
a q2

√
b+ q3

√
a
√
b

q2
√
b− q3

√
a
√
b q0 − q1

√
a

)
We write ZO1(s) := ZΓO(s) with this identification.
Since B is indefinite over Q, there is a unique maxi-
mal order O of B up to B×-conjugation. Therefore,
ZO1 (s) depends only on B and not on the choice
of O. We simply write ZB(s) for the Selberg zeta
function ZO1 (s).

For any basis {ui} of O over Z, set

d(B) = | det(tr(uiuj))|1/2.

The number d(B) is independent of the choice of O
and {ui}, and equals the product of prime numbers
which ramify at B/Q.

Put

D := {D ∈ Z>0 | D ≡ 0, 1 (mod 4), not a square}.

Let o be an order of K = Q(
√
D) and h(o) =

h(D) be the number of classes of proper o-ideals in
the narrow sense. We moreover set

λ(K) =
∏

p|d(B)

(
1 −
(
K

p

))
,

where (K/p) denotes the Artin symbol for K =
Q(

√
D). Let εD = (α+ β

√
D)/2 with (α, β) be-

ing the minimal solution of the Pell equation: x2 −
Dy2 = 4. The main theorem of this paper is as fol-
lows:

Theorem 1.1. Let B be a division indefinite
quaternion algebra over Q. Then
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ZB(s) =
∏
D>0

∗ ∞∏
n=0

(
1 − ε

−2(s+n)
D

)h(D)λ(D)
,

and

Z′
B

ZB
(s) =

∑
D>0

∗ ∞∑
m=1

h(D)λ(D) log ε2D · ε−2ms
D

1 − ε−2m
D

,

where λ(D) = λ(Q(
√
D)) and the symbol ∗ indicates

that D runs through all elements in D satisfying the
following conditions.

(Pr-i)
(

K
p

)
�= 1 for any prime integers p | d(B).

(Pr-ii) (f(D), d(B)) = 1, where the positive integer
f(D) is given by D = f(D)2DK , DK being the
discriminant of K.
Remark 1.2. For Γ = SL(2,Z) and its con-

gruence subgroups, Sarnak [S] obtains such an arith-
metic form of ZΓ(s).

Remark 1.3. Though for the proof of The-
orem 1.1 we have used the theory of optimal em-
beddings due to Eichler, the theorem would also be
deduced from the result of [BJ] and [S1] ([S2]).

Theorem 1.1 has an application of improving
the prime geodesic theorem:

(1.2) πΓ(x) ∼ li(x) ∼ x

log x
,

where πΓ(x) is the number of primitive hyperbolic
conjugacy classes P of Γ whose norm N(P ) satisfies
that N(P ) ≤ x, and the relation “∼ ” means that
the quotient of both sides goes to 1 as x→ ∞. If we
were able to prove

(1.3) πΓ(x+ y)−πΓ(x) ∼ li(x+ y)− li(x) ∼ y

logx
,

then the uniformity of the distribution would be es-
tablished. An estimate like (1.3) is called the Brun-
Titchmarsh type prime geodesic theorem. When
Γ = SL(2,Z), Iwaniec [I, Lemma 4] proved that for
x(1/2)(logx)2 < y < x

πΓ(x+ y) − πΓ(x) � y.

His method is applicable to our case by our using
Theorem 1.1. We prove:

Theorem 1.4. Let B be a division indefinite
quaternion algebra over Q. Put πB(x) = πO1(x).
Then for x(1/2)(log x)2 < y < x, we have

(1.4) πB(x+ y) − πB(x) � y.

The implied constant depends only on B.

Remark 1.5. (a) Theorem 1.4 gives the best
possible range of y in view of the multiplicities
of the length spectrum in the following sense: It
is known that N(P ) is a function of | tr(P )| and
grows like | tr(P )|2. When x ∈ Z2 = {n2 | n ∈
Z}, there exist at least

√
x different P ’s which

satisfy | tr(P )|2 = x. It means πΓ(x) jumps by as
much as

√
x at that moment. Therefore (1.4) is

not true for y <
√
x. Hence the exponent 1/2 in

the lower bound of the range of y in Theorem 1.4
is the best possible.

(b) Theorem 1.4 gives the best possible exponents of
x and y according to the conjectural form (1.3).

(c) The current best error term of (1.2) for arith-
metic cocompact groups is obtained by Koyama
[K]:

(1.5) πB(x) = li(x) + O(x(7/10)+ε).

By using this error term one easily computes
that Theorem 1.4 is valid for x(7/10)+ε <

y < x. Hence Theorem 1.4 is nontrivial for
x(1/2)(logx)2 < y ≤ x(7/10).

(d) The estimate (1.5) together with Theorem 1.1
implies the following estimates for class num-
bers: ∑∗

0<εD≤x

h(D)λ(D) = li(x2) +O(x(7/5)+ε),

∑∗

0<εD≤x

h(D)λ(D) log εD =
x2

2
+ O(x(7/5)+ε),

which should be compared with [S, Theorem
4.11] and [H, p. 519, Proposition 2.9].
2. Explicit Form. We introduce the follow-

ing two theorems due to Eichler.
Theorem 2.1 (Eichler [E]). Let K be a quad-

ratic field over Q and oK the maximal order of K.
Each order o of K has an expression: o = Z + foK

for some positive integer f = f(o). The discrimi-
nant of o is given by D(o) := f2DK , DK being the
discriminant of K. Then, (i) There exists a Q-
isomorphism ϕ of K into B, if and only if (K/p) �=
1 for all prime integers p | d(B). (ii) Let K satisfy
the condition of (i) and o an order of K. Then
there exists a Q-isomorphism ϕ of K into B such
that ϕ(o) = ϕ(K) ∩O, if and only if (f(o), d(B)) =
1.

Denote by I(K, o) the set of all Q-isomorphisms
ϕ of K into B such that ϕ(o) = ϕ(K) ∩ O. We say
that, for ϕ, ϕ′ ∈ I(K, o), ϕ′ is O1-equivalent to ϕ, if
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there exists some ε ∈ O1 such that ϕ′(z) = εϕ(z)ε−1

for any z ∈ K. Denote by I(K, o)/O1 the set of all
the O1-equivalence classes in I(K, o).

Theorem 2.2 (Eichler [E]). We have

�
(
I(K, o)/O1

)
= h(o)λ(K).

For a proof we refer to Shimizu [Sh] (see also
[A]).

Now we need the relation between the quadratic
field over Q and the quaternion algebra. Set

L̃ := {x ∈ Z + 2O | tr(x) = 0}.

Any non zero element x ∈ L̃ is called primitive, if it
cannot be expressed as x = my with m ∈ Z, m �=
±1, y ∈ L̃. Denote by L̃pr the subset of L̃ consisting
of primitive elements of L̃. For each positive discrim-
inant D let

Cpr(D) := {ξ ∈ L̃pr | n(ξ) = −D}.

In view of Theorem 2.1 we see the following relation:
Lemma 2.3. It holds that Cpr(D) �= φ, if and

only if D satisfies the conditions (Pr-i) and (Pr-ii).
Proof. For each x ∈ Cpr(D) we form an iso-

morphism ϕx : K −→ B by ϕx(
√
D) = x.

Let o be an order of K with discriminantD. We
put x = p+2ξ for p ∈ Z and ξ ∈ O. Because tr(x) =
0, we have n(x)+ p2 = 4n(ξ). From n(x) = −D and
n(ξ) ∈ Z we have p2 ≡ D (mod 4).

When D ≡ 1 (mod 4), we have 1 + p ∈ 2Z and

1 + x = 1 + p+ 2ξ ∈ 2Z + 2O ⊂ 2O.

In the case of D ≡ 0 (mod 4), we have p ∈ 2Z and

x = p + 2ξ ∈ 2Z + 2O ⊂ 2O.

By the isomorphism ϕx, we have

ϕx(o) =


Z +

1 + x

2
Z if D ≡ 1 (mod 4),

Z +
x

2
Z if D ≡ 0 (mod 4).

Then we have ϕx(o) ⊂ O. From the primitivity of
x, there does not exist n ≥ 2 which satisfies ϕx(o) ⊂
nO. Theorem 2.1 leads to (Pr-i) and (Pr-ii).

Conversely, we assume (Pr-i) and (Pr-ii). From
Theorem 2.1, there exists a Q-isomorphism ϕ : K →
B. When K = Q(

√
D), we form x := ϕ(

√
D). Since√

D ∈ Z + 2o, we have x ∈ Z + 2O. Since oK is the
maximal order of K, o = Z + f(o)oK is given by

(2.1)

o =


Z +

f(o) +
√
D

2
Z, DK ≡ 1 (mod 4),

Z +
√
D

2
Z, DK ≡ 0 (mod 4).

Then since there does not exist n ≥ 2 such that
(
√
D/n) ∈ Z + 2o, it holds that x is primitive. It

follows that x ∈ Cpr(D).
Set

Cpr :=
⋃∗

D>0

Cpr(D),

where D runs over all positive discriminants satisfy-
ing the conditions (Pr-i) and (Pr-ii).

Denote by Prm+(O1) the set of primitive ele-
ments γ of O1 with tr(γ) > 2. For ε ∈ Prm+(O1),
we put Q(ε) := Q+Qε. Since B is a division quater-
nion algebra, Q(ε) is a quadratic extension over Q
and is isomorphic to K = Q(

√
d2 − 4) over Q with

d = tr(ε). We denote this isomorphism by ϕ : K −→
Q(ε) given by ϕ((d +

√
d2 − 4)/2) = ε. By our

putting o := Q(ε) ∩ O which is an order of Q(ε),
it holds o := ϕ−1(o) is an order of K. One can write
o = Z+f(o)oK with f(o) ∈ Z>0, oK being the max-
imal order of K. If we set D = f(o)2DK , then D is
the discriminant of o. Since ϕ(o) = o = Q(ε) ∩ O,
Theorem 2.1 implies (f(o), d(B)) = 1. We see that
Cpr(D) �= φ for D determined by the order of Q(ε).

Lemma 2.4. It holds that

ϕ−1(ε) = εD,

where D is the discriminant of o, and εD =
(α+ β

√
D)/2 with (α, β) (α, β ∈ Z>0) being the

minimal solution of the Pell equation x2 − Dy2 =
4.

Proof. We have

ϕ−1(ε) =
d+

√
d2 − 4
2

.

We put α := d and β2D := d2 − 4, where D =
f(o)2DK . In what follows we prove (α, β) is the
minimal. Assume (α0, β0) is the minimal solution,
which is not (α, β). Then there exists n ∈ Z(�= 1)
such that

α+ β
√
D

2
=

(
α0 + β0

√
D

2

)n

.

By the Q-isomorphism ϕ, we have
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ε = ϕ

(
α+ β

√
D

2

)
= ϕ

((
α0 + β0

√
D

2

)n)

= ϕ

(
α0 + β0

√
D

2

)n

.

This contradicts ε is primitive.
Now we have K = Q(

√
d2 − 4) = Q(

√
D). By

using the correspondence in Lemma 2.4, we have the
following lemma.

Lemma 2.5. Let the notation be the same as
in Lemma 2.4. The map Prm+(O1) ∈ ε 
−→ ξ ∈
Cpr, where ξ is given by ξ = (2ε− α)/β, is a bijec-
tion.

Proof. Let ε ∈ Prm+(O1) be given. We put α,
β andD to be the same as in the proof of Lemma 2.4.
Set ξ = (2ε− α)/β, then we have tr(ξ) = 0. From
n(ε) = n((α+ βξ)/2) = 1, ξ satisfies α2 + β2n(ξ) =
4. Since (α, β) is the solution of the Pell equation
x2 −Dy2 = 4, we have n(ξ) = −D. By using

ϕ−1(ε) = εD =
α+ β

√
D

2
as Lemma 2.4, we have

ϕ−1(ξ) =
√
D.

The definition of D gives
√
D = f(o)

√
DK . Because

of
√
DK ∈ oK and o = Z+f(o)oK , we have

√
D ∈ o.

From (2.2) we get
√
D ∈ Z + 2o. Since ε is

a primitive element, (α, β) is the minimal solution.
It shows that there does not exist n ≥ 2 such that
(
√
D/n) ∈ Z + 2o. From ϕ(o) = o = Q(ε) ∩ O and

ϕ(
√
D) = ξ, we have ξ ∈ Z + 2(Q(ε) ∩O) ⊂ Z + 2O

and also we deduce that ξ is a primitive element in
L̃. Therefore ξ ∈ Cpr(D).

Conversely, we choose and fix an element ξ in
Cpr and put D := −n(ξ). Let (α, β) ∈ Z× Z be the
minimal solution of the Pell equation x2 −Dy2 = 4,
and set ε := (α+ βξ)/2. Then we have

n(ε) =
α2 + β2n(ξ)

4
= 1,

and by ξ ∈ Z + 2O, we also have

α+ βξ ∈ 2O.

Thus we have ε ∈ O1. Since ξ is primitive, there does
not exist n ≥ 2 such that ϕ−1(ξ/n) = (

√
D/n) ∈

Z + 2o. Therefore ε is primitive. This completes the
proof.

We denote by Cpr/O1 (resp. Cpr(D)/O1) the
set of O1-conjugacy classes of Cpr (resp. Cpr(D)).

Lemma 2.6. The correspondence in Lemma
2.4 induces a bijection of Prm+(O1)/O1 onto
Cpr/O1.

Proof. Let ε, ε′ ∈ Prm+(O1). When ε is O1-
conjugate to ε′, there exists γ ∈ O1 such that ε′ =
γεγ−1 . Since Q(ε′)∩O = γ(Q(ε) ∩O)γ−1 and both
of ε, ε′ are primitive, the corresponding minimal so-
lutions of the Pell equations are the same. Therefore
we may write

ε =
α+ βξ

2
and ε′ =

α+ βξ′

2

with α, β ∈ Z>0. Thus ξ′ = γξγ−1 .
Let D ∈ Z>0 be a discriminant satisfying the

conditions (Pr-i) and (Pr-ii). From Lemma 2.3, we
easily see that there exists a bijection from Cpr(D)
to I(K, o), where K = Q(

√
D) and o is the order of

K with discriminant D. Thus we have:
Lemma 2.7. There exists a bijection from

Cpr(D)/O1 to I(K, o)/O1.
Proof. For x, x′ ∈ Cpr(D), take ϕx and ϕx′ ∈

I(K, o) such that ϕx(
√
D) = x and ϕx′(

√
D) = x′.

Then for z = p+ q
√
D ∈ K, where K = Q(

√
D) and

p, q ∈ Q, we have

(2.2) ϕx(z) = p+ qx and ϕx′(z) = p+ qx′.

When x′ is O1-equivalent to x, there exists γ ∈ O1

such that x′ = γxγ−1 . Then we have

γϕx(z)γ−1 = γ(p + qx)γ−1 = p+ qx′ = ϕx′ (z).

Conversely, assume ϕx is O1-equivalent to ϕx′ . The
equation γϕx(z)γ−1 = p + qγxγ−1 means ϕx′ (z) =
p+ qx′. There exists γ ∈ O1 such that γϕx(z)γ−1 =
ϕx′(z). From (2.2), we get γxγ−1 = x′.

In view of the theorem of Eichler (Theorem 2.2),
by applying Lemma 2.7 we have

Proposition 2.8. Let D ∈ Z>0 be a discrim-
inant satisfying the conditions (Pr-i), (Pr-ii). Then

�
(
Cpr(D)/O1

)
= h(D)λ(D).

The eigenvalues λ of the element of ΓO ⊂
SL2(R) associated to ε ∈ O1 by injection (1.1) are
given by

λ =
d±

√
d2 − 4
2

,

where d = tr(ε). Now we write NB(ε) for the norm
of the element associated to ε. From the correspon-
dence in Lemma 2.5, we have

NB(ε) =
(
ϕ−1(ε)

)2
.
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Then the Selberg zeta function attached to O1 is

ZB(s) =
∏

ε∈Prm+(O1)/O1

∞∏
m=0

(1 −NB(ε)−s−m).

Lemmas 2.4, 2.6 and Proposition 2.8 show Theo-
rem 1.1.

3. Brun-Titchmarsh type prime geodesic
theorem. We introduce the following two theo-
rems.

Theorem 3.1 (Landau [L], p. 196). Let D be
a positive discriminant. Then we have

h(D) =
√
D

log εD

∞∑
n=1

χD(n)
n

,

where χD(n) = (D/n) is Kronecker’s symbol.
Theorem 3.2. For 0 < Y < t, put S(Y, t) to

be the character sum

S(Y, t) :=
∑

Y ≤n≤t

χD(n).

Then it holds that∣∣∣S(Y, t)
∣∣∣� |D|(1/2) log |D|.

For a proof we refer to Davenport [D, p. 135].
These estimates lead to the following proposi-

tion.
Proposition 3.3. Let D ∈ Z>0 be a positive

discriminant. Then

h(D) � D1/2

as D → ∞.
Proof. We estimate

∑∞
n=1 χD(n)/n by break-

ing up the sum into n < Y and n ≥ Y , Y to be
determined.

For the first sum, we use a trivial bound:∣∣∣∣∣∑
n<Y

χD(n)
n

∣∣∣∣∣ ≤ ∑
n<Y

1
n

� logY.

On the second sum, since the summation by parts
gives ∑

n≥Y

χD(n)
n

=
∫ ∞

Y

S(Y, t)
t2

dt,

Theorem 3.2 leads to∑
n≥Y

χD(n)
n

�
∫ ∞

Y

D1/2 logD
t2

dt =
D1/2 logD

Y
.

These give

∣∣∣∣∣
∞∑

n=1

χD(n)
n

∣∣∣∣∣� log Y +
D1/2 logD

Y
.

On taking Y = D1/2, we get∣∣∣∣∣
∞∑

n=1

χD(n)
n

∣∣∣∣∣� logD.

Since log εD � logD by the definition of εD, we have
the proposition from Theorem 3.1.

By using Proposition 3.3 and the following es-
timates for the divisor function τ (u) for a positive
integer u, Theorem 1.4 will be proved.

Lemma 3.4. For any α > 1 and x ≥ 2,∑
u<

√
x

τ (u)
uα

�
α

1 and
∑

u<
√

x

τ (u)
u

� (log x)2.

where for the first inequality the implied constant de-
pends only on α.

Lemma 3.5. We have

�{n | n2 ≡ 4 (mod u2), n < u2} � τ (u),

where u and n are integers.
Proof of Theorem 1.4. Let B, O, and O1 be

the same as before. Set Γ = O1 ⊂ SL2(R). By
the definition of πB(x),

πB(x + y) − πB(x) =
∑

ε
x<NB(ε)≤x+y

1,

where the sum is taken over ε ∈ Prm+(O1)/O1 with
x < NB(ε) ≤ x + y. We write this sum in terms
of positive discriminants D satisfying the conditions
(Pr-i) and (Pr-ii) in Section 1:

πB(x+ y) − πB(x) =
∑∗

D>0√
x<εD≤√

x+y

h(D)λ(D).

Let t(B) denote the number of distinct primes divid-
ing d(B). Then obviously, λ(D) ≤ 2t(B).

We have

πB(x+ y) − πB(x) ≤ 2t(B)
∑∗

D√
x<εD≤

√
x+y

D1/2

�
∑
D√

x<εD≤√
x+y

D1/2.

The estimate of the right hand side is proved by
Iwaniec [I]. We give here a more detailed presen-
tation of that proof. Put εD = (α+ β

√
D)/2 with
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α, β ∈ Z>0. From the condition on εD , it follows
that

(3.1) 2
√
x < α+ β

√
D ≤ 2

√
x+ y,

and the inverse of each term gives

(3.2)
2√
x+ y

≤ α− β
√
D <

2√
x
,

since (α, β) is a solution of the Pell equation.
From (3.2) we have α = β

√
D + T with

2√
x+ y

≤ T ≤ 2√
x
.

By combining this with (3.1), we have

(3.3)
√
x+

T

2
< α ≤

√
x+ y +

T

2
.

By expanding
√
x+ y =

√
x+

y

2
√
x

+E

with E the error term satisfying E = O(x−(3/2)y2)
as y < x, (3.3) can be written by

(3.4)
√
x+

T

2
< α ≤

√
x+

T

2
+

y

2
√
x

+ E.

We denote the region of α expressed in (3.4) by T .
Then we have

πB(x+ y) − πB(x) �
∑
α∈T

∑
β

α2−Dβ2=4

D1/2.

By the Pell equation, we have D � (α/β)2. Hence

πB(x+ y) − πB(x) �
√
x
∑

β<2
√

x

1
β

∑
α∈T

α2≡4 (mod β2)

1.

The last sum over α is estimated by

τ (β)
( 1
β2

( y√
x

+ E
)

+ 1
)

from Lemma 3.5. The estimates in Lemma 3.4 now
give

πB(x+ y) − πB(x) � y +
y2

x
+

√
x(log x)2.

It is estimated by y as long as x(1/2)(logx)2 < y < x.

Remark 3.6. Zeev Rudnick pointed out that
for 1 < y < x we can prove

πB(x+ y) − πB(x) � y logx
by omitting the congruence condition at the cost of
increasing the number of solutions in the proof of
Theorem 1.4.
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