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Abstract: In this paper we consider the inverse scattering problem for the following
Hartree type equation:

i
∂u

∂t
= −∆u+ (|x|−σ ∗ |u|2)u.

We prove the uniqueness theorem on the inverse scattering problem with respect to the power σ.
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1. Introduction. In this paper we consider
the following Hartree type equation:

i
∂u

∂t
= −∆u+ F (u), (t, x) ∈ R×Rn,(1.1)

where ∆ is the n-dimensional Laplacian in x, and

F (u) = (|x|−σ ∗ |u|2)u(1.2)

=
(∫

Rn

|x− y|−σ|u(t, y)|2dy
)
u(t, x).

The inverse scattering problem for the nonlinear
Schrödinger equation has been studied by Strauss [7],
Weder ([9], [10], [12]) and Watanabe [8]. In [7] (pp.
64–67), the power nonlinearity case;

F (u) = V (x)|u|p−1u

was studied. Weder ([9], [12]) studied the nonlinear
Schrödinger equation with a potential;

F (u) = V0(x)u+ λ|u|p−1u, λ ∈ Rn

and

F (u) = V0(x)u+
∞∑

j=1

Vj(x)|u|2(j0+j)u.

A cubic convolution nonlinearity case;

F (u) = q(x)u+ µ(|x|−σ ∗ |u|2)u, µ ∈ Rn

was studied in Watanabe [8]. In those papers, it was
shown that if one of powers (p, j0, j, or σ in each
cases) is given in some suitable conditions, then co-
efficients (V (x), V0(x), λ, Vj(x), q(x), µ) are uniquely
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determined from the scattering operator. In addi-
tion, a method for the reconstruction of coefficients
were given.

Then the following problem arises.
Problem. When the power (p or σ) is un-

known, can we determine the power from the scat-
tering operator?

As far as the author knows, there are no results
on this problem. In this paper we shall obtain the
uniqueness theorem on this inverse scattering prob-
lem for Hartree type equation (1.1), (1.2).

Before stating our theorem, we give notations
and introduce a result on the scattering problem for
the equation (1.1), (1.2).

Notation and function spaces. For a Ba-
nach space Z, Lp(Z) = Lp(R;Z) is the space of all
Z valued Lp functions in Rn. The function space S
is indefinitely differentiable on Rn and all of whose
derivatives remain bounded when multiplied by poly-
nominals. Let Fφ or ˆ be the Fourier transform of φ
defined by

Fφ(ξ) =
1

(2π)n/2

∫
Rn

e−ixξφ(x) dx.

The inverse Fourier transform F−1 is given by

F−1φ(x) =
1

(2π)n/2

∫
Rn

eixξφ(ξ) dξ.

For r ∈ R and 1 ≤ p ≤ ∞, let Hr,p = Hr,p(Rn) be
the completions of C∞0 with respect to the norm,

‖f‖Hr,p = ‖F−1{〈ξ〉rf̂(ξ)}‖Lp .

Different positive constants might be denoted by
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the same letter C.
Put

W = L3(R;H1,q) ∩ L∞(R;H1,2),

where q satisfies

1
q

=
1
2
− 2

3n
.(1.3)

The following result on the scattering problem
for equation (1.1), (1.2) has been known.

Theorem (Mochizuki [3]). If σ satisfies 2 ≤
σ ≤ 4 and σ < n, then there exists ρ > 0 with the
following properties: If φ− ∈ Hρ := {φ ∈ H1,2 :
‖φ‖H1,2 < ρ}, then there exists a unique solution
u ∈W of (1.1), (1.2) such that

‖u(t)− e−itH0φ−‖H1,2 → 0 as t→ −∞.

Furthermore, there exists a unique φ+ ∈ H1,2 such
that

‖u(t)− e−itH0φ+‖H1,2 → 0 as t→∞.

The map S : φ− → φ+, which is called a scat-
tering operator, is defined on a neighborhood of 0 in
H1,2 and represented as

Sφ(x) = φ(x) +
∫ ∞

−∞
eitH0F (u) dt,(1.4)

where H0 = −∆ and u is a solution of (1.1), (1.2)
with the initial data φ ∈ Hρ at t = −∞.

Now we state our theorem. Put

Sjφ(x) = φ(x) +
∫ ∞

−∞
eitH0(|x|−σj ∗ |uj(t, x)|2)

× uj(t, x) dt, j = 1, 2,

where uj(x) is a solution of (1.1), (1.2) with σj in-
stead of σ.

Theorem 1.1. Assume that the power σ sat-
isfies 2 ≤ σ ≤ 4 and σ < n. If S1 = S2, then σ1 =
σ2.

Remark 1.1. In Hayashi-Tsutsumi [1], the
scattering problem for equation (1.1), (1.2) was stud-
ied under the condition 1 < σ < min(4, n). Using
their results, we can also obtain Theorem 1.1 for 1 <
σ < min(4, n) in the same way as we shall prove.

This paper is organized as follows:
In Section 2 we give some preliminary results used
throughout this paper. Theorem 1.1 is proved in
Section 3.

2. Preliminaries. We summarize some use-
ful lemmas in this section.

Lemma 2.1. Let 0 < σ < n. Then for any f ,
g ∈ S,

(|x|−σ ∗ f, g) = πn/2γ(σ)
( ∣∣∣ξ

2

∣∣∣−n+σ

f̂ , ĝ
)
,

where

γ(σ) =
Γ

(
(n− σ)/2

)
Γ (σ/2)

and Γ is the Gamma function.
For Lemma 2.1, see, e.g., Stein [4].
Lemma 2.2. Let 2 ≤ σ ≤ 4 and σ < n, 1/q =

1/2 − 2/(3n). Then there exist positive constants C
such that

‖e−itH0φ‖W ≤ C‖φ‖H1,2 , for φ ∈ H1,2,

‖(|x|−σ ∗ [fg])h‖H1,2 ≤ C‖f‖H1,q‖g‖H1,q‖h‖H1,q

for f, g, h ∈ H1,q,∥∥∥∥∫ t

−∞
e−i(t−τ)H0(|x|−σ ∗ |u(τ, x)|2)u(τ, x) dτ

∥∥∥∥
W

≤ C‖u‖3W , for u ∈W .

Lemma 2.3. Let 2 ≤ σ ≤ 4 and σ < n. Then
for a solution u(t, x) of the integral equation

u(t, x) = e−itH0(εφ)

+
∫ t

−∞
e−i(t−τ)H0(|x|−σ ∗ |u(τ, x)|2)u(τ, x)dτ,

we have

‖u‖W ≤ Cε‖φ‖H1,2 for φ ∈ H1,2.

For Lemma 2.2 and Lemma 2.3, see, e.g.,
Mochizuki [3].

Lemma 2.4. Let 2 ≤ σ ≤ 4 and σ < n. Then
for any φ ∈ H1,2,

lim
ε→0

1
ε3

(
(S − I)(εφ), φ

)
(2.1)

=
∫
R

∫
Rn

(|x|−σ ∗ |e−itH0φ|2)|e−itH0φ|2 dx dt,

where S is (1.4).
Proof. Let v = e−itH0(εφ) and w = u−v. Then

it follows that(
(S − I)(εφ), φ

)
=

∫
R

(
(|x|−σ ∗ |u|2)u, e−itH0φ

)
dt

= I1 + I2 + I3

+ ε3
∫
R

∫
Rn

(|x|−σ ∗ |e−itH0φ|2)|e−itH0φ|2 dx dt,
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where

I1 =
∫
R

(
(|x|−σ ∗ |u|2)w, e−itH0φ

)
dt,

I2 =
∫
R

(
(|x|−σ ∗ [uw̄])v, e−itH0φ

)
dt,

I3 =
∫
R

(
(|x|−σ ∗ [wv̄])v, e−itH0φ

)
dt.

By Schwarz inequarity, Lemma 2.2 and Lemma 2.3,
we have

|I2|

≤
∫
R

∣∣((|x|−σ ∗ [uw̄])v, e−itH0φ
)∣∣dt

≤C

∫
R

‖ (|x|−σ ∗ [uw̄])v‖H1,2 dt

≤C

∫
R

‖u‖H1,q‖w‖H1,q‖v‖H1,q dt

≤C

∫
R

‖w‖H1,q (‖u‖2H1,q + ‖v‖2H1,q )dt

≤C

(∫
R

‖w‖3H1,q dt

)1/3

×

{(∫
R

‖u‖3H1,q dt

)2/3

+
(∫

R

‖v‖3H1,q dt

)2/3
}

≤C

∥∥∥∥∫ t

−∞
e−i(t−τ)H0(|x|−σ ∗ |u(τ, x)|2)u(τ, x)dτ

∥∥∥∥
W

×(‖u‖2W + ‖v‖2W )

≤C‖u‖3W (‖u‖2W + ε2‖φ‖2H1,2)

≤Cε5‖φ‖5H1,2 .

In the same way we have |I1| ≤ Cε5‖φ‖5H1,2 , |I3| ≤
Cε5‖φ‖5H1,2 . Hence we get

1
ε3

(
(S − I)(εφ), φ

)
−→

∫
R

∫
Rn

(|x|−σ ∗ |e−itH0φ|2)|e−itH0φ|2 dx dt,

as ε→ 0.
3. Proof of Theorem 1.1. Put

Ij [φ] = lim
ε→0

1
ε3

(
(Sj − I)(εφ), φ

)
, j = 1, 2.

From Lemma 2.1 and Lemma 2.4

Ij [φ] =
∫
R

∫
Rn

(|x|−σj ∗ |e−itH0φ|2)|e−itH0φ|2 dx dt

= C

∫
R

∫
Rn

γ(σj)
|ξ/2|n−σj

∣∣F(|e−itH0φ|2)(ξ)
∣∣2 dξ dt

= C

∫
R

∫
Rn

γ(σj)
|ξ|n−σj

∣∣F(|e−itH0φ|2)(2ξ)
∣∣2 dξ dt.

Subtracting I2 from I1, by the assumption S1 = S2

we obtain for any φ ∈ H1,2

0 =
∫
R

∫
Rn

(
γ(σ1)
|ξ|n−σ1

− γ(σ2)
|ξ|n−σ2

)
(3.1)

× |F(|e−itH0φ|2)(2ξ)|2 dξ dt.

We assume that σ1 > σ2. If |ξ| is sufficiently
small, then we have

γ(σ1)
|ξ|n−σ1

− γ(σ2)
|ξ|n−σ2

< 0.

Taking ψ ∈ S such that supp ψ̂ ⊂ {ξ : |ξ| ≤ ε′, ε′ is
sufficiently small}, then

supp
{∣∣F(|e−itH0ψ|2)(2ξ)

∣∣2} ⊂ {ξ : |ξ| ≤ ε′}.

Moreover,
∣∣F(|e−itH0ψ|2)(2ξ)

∣∣2 > 0 on a neighbor-
hood of ξ = 0. Hence for such ψ we have∫

R

∫
Rn

(
γ(σ1)
|ξ|n−σ1

− γ(σ2)
|ξ|n−σ2

)
×

∣∣F(|e−itH0ψ|2)(2ξ)
∣∣2 dξ dt < 0.

This contradicts with (3.1). Therefore we have com-
pleted the proof of Theorem 1.1.
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