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Abstract:

Let G =To(N) and g be the group generated by the involution z — —1/Nz of

the upper half plane. We determine the cohomology set H'(g,G) in terms of the class numbers

h(—N) and h(—4N) of quadratic forms.
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This is a continuation
(and a completion) of my preceding paper [3] which
will be referred to as (I) in this paper.

For any positive integer N, let G = I'o(N) and

0 -1 . . _
S = <N 0 > Using this S we can let g = (s),

s2 =1, act on G by A° = SAS™! and speak of the
first cohomology set H'(g, G). In (I), we determined
this set when N # 3 (mod 4). In this paper, we
shall remove this restriction on N. As usual, for a

1. Introduction.

negative integer D, D = 0 or 1 (mod 4), we denote
by h(D) the number of classes of primitive positive
integral binary quadratic forms of discriminant D.
Then we have the following

(1.1) Theorem.

ﬁHl(ga]-—‘O(N))

— 2h<_4N)7
- { 2(h(=4N) + h(=N)),

N # 3 (mod 4),
N =3 (mod 4).

2. FT(N). Asin (I), the proof of (1.1) is
based on the equality
(2.1)  H'(g,To(N)) = F(N)/T°(N), (L (28)),
where

(2.2) F(N) = {F = (A‘;b xi) cac — Nb? = 1}.

On the right side of (2.1), we consider the right ac-
tion of I'°(V) on the set (2.2) defined by F — ‘TFT,
T € TO(N).

As usual, for a negative integer D, D =0, or 1
(mod 4), we denote by ®(D) the set of all primitive
positive integral binary quadratic forms of discrimi-
nant D:
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(2.3) ®(D)
_ [ [ =ax? + by +cy*; (a,b,c) =1,
T la>0, ¥ —4dac=D<0 '

We often identify f € ®(D) with the half-integral
. a b/2 . .
matrix (b /2 c ) The right action of the group

SLy(Z) on ®(D) is given by f +— tU fU, U € SLo(Z).
We denote by C(D) the orbit space ®(D)/SLy(Z)
and by h(D) the cardinality of C(D), i.e., the class
number of forms of discriminant D.

Back to the set F(N) in (2.2), we set
FH(N)={F € F(N); a> 0},
F-(N)={F € F(N); a <0}

Since F(N) is a disjoint sum of F(N) and F~(N),

and each summand is stable under the action of
I'%(N), we have

(25)  ¢H'(g,To(N)) = 24(F(N)/T°(N)).
In view of (2.2), (2.3), (2.4), the set F*(N) may be

written as

2 2
n | f=ax* 4+ 2Nbzy + Ncy*;
f(N)_{a>0, Df=—4N '

(2.4)

(2.6)

For an integral form f = ax? + bxy + cy?, we
put

(2.7)

It is easy to see that i(f) = i(g) if f ~ g, i.e., if
g = 'TfT, T € SLy(Z). Needless to say i(f) =
1 means f is primitive. Since forms in F(N) are
not necessary primitive for general N, we are forced
to reclassify F1(N) according to the invariant i(f)
when we compare it with the set ®(D) where i(f) =
1 always. Thus, we set, for an integer k > 0,

i(f) = (a,b,¢) = the g.c.d. of coefficients.
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(2.8) Fr(N)
= {f = ax® + 2Nbxy + Ney? € FT(N); i(f) = k}.
Actually, there are not many choices for the values

i(f), f € FH(N). In fact the condition ac— Nb? =1
in (2.2) implies that

(2.9) Fir(N)=¢ forall N and k > 2,
and

(2.10) Fo(N) # ¢ < N = 3 (mod 4).
Hence we have the decomposition

(2.11) FY(N)=F(N)UFy(N) forall N
and

(2.12) FF(N)=Fi(N) when N # 3 (mod 4).

A typical element in F5(N) for N = 3 (mod 4) is
f=22*+2Nzy+ (1/2)N(N + 1).

From now on let k = 1 or 2. Clearly F(N) is
stable under the action of I'°(N). For a form f €
Fi(N) the form k=1f is primitive of discriminant
—4k~2N and hence a form in ®(—4k~2N). Conse-
quently the map f — k~'f induces naturally a map:

(2.13) mp : Fi(N)/TO(N) — ®&(—4k~2N)/SLy(Z).

We shall prove that 7 is bijective.

3. g is injective. To prove that 7 is in-
jective, take F', G € Fi(N) such that k~'F ~ k=G
(mod SLy(Z)). We must then show that F' ~ G (mod
I'%(N)). The assumption, however, implies that F ~
G (mod SL3(Z)) and hence the same argument as in
(I, 3) works to conclude F' ~ G (mod T°(N)). [

4. g is surjective. For k=1 or 2, put

(4.1) D = —4k7%N <0.

Since k = 2 only if N = 3 (mod 4), we have D =0, 1
(mod 4). Let K be the quadratic field Q(v/D) =
Q(v/—N) with the discriminant dx and

_dig +Vdg
K= .
2
Then Ok = [1,wk] is the ring of integers of K. Any
order O of K is given as O = [1, fwk] with the con-
ductor f such that D = f2dg and [Og : O] = f.
Any ideal in O is of the form

(4.3) a=la,b+ fwk], a,b€Z, a=(0:a),

(4.2)

(4.4) a|N(b+ fwk), N being the norm in K/Q.

Notice that there is an integer h so that
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h++vD
T

To prove that 7 is surjective, for any form F' =
ax? + by + cy? in ®(D) we must find a form G in
Fi(N) such that the form class of k=G is mapped
on the class of F'. By the well-known isomorphism

(4.6)  C(D)=C(0)~Ik(f)/Prz(f)
(see [1, Prop. 7.22])

(45) b—l—fwK =

we may assume that the coefficient a of 22 in F is
prime to f, (a,f) = 1. In view of (4.5), the ideal
corresponding to F' is of the form

b++vD

4. =
(4.7) e

Since we are dealing with ideal classes in the last
term of (4.6), by the Cébotarev theorem applied to
the ideal class group in (4.6), we can replace a by a

prime ideal p = [p, (r++/D)/2] such that (p, N) = 1.
Now we have
_AN, ifk=1,
48) D={ -N, ifk=2

(the case N = 3 (mod 4) only).

Since the argument in (I, 4) works for k = 1 without
any change, from now on we shall consider exclu-
sively the case k = 2, and so N = 3 (mod 4). First
note that, by (4.4),

(4.9) 4p’N + 72

Next choose u so that Nu = —r (mod 4p). In view
of (4.9), we have N?u? =12 = —N (mod 4p), hence
4p|N (1 + Nu?) and so 4p|1 + Nu?.

Consequently, we find

-

(4.10) p= [1% = |p, M] :

2

Using v such that 4pv = 1 + Nu?, put G = 2pz? +
2Nuzy+2Nvy?. Then, one verifies that Dg = —4N
and i(G) = 2, i.e., G € F»(N). Since the ideal p cor-
responds to 271G, the form class of 271G is mapped
to the class of F' since p, a are in the same ideal class.

Having verified that the map 7y, is bijective, our
proof of (1.1) Theorem is a consequence of materials
in 2, especially of (2.9)-(2.12). [

5. To(p?*t1). Let p be a prime and n be a
nonnegative integer. As an application of (1.1) The-
orem we shall determine the cardinality of the set
H*'(g,To(p**1)) where the action of g on I'g(p**1)
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Table
Case 1. D = —4p?"t1,
p=1,2(mod4) | p=3 | p=3(mod4), (p+#3)
dx *4}) -3 —p
f p" 2-3" —2p"
Ok : OF] 1 3 1
3/2, p=3 (mod 8)
I, s 1 3/2 1/2, p=7 (mod 8)
n . | 3hgp™, p=3 (mod 8)
D) hicp 3 hixp™, p=7T (mod 8)
Case 2. D = —p?"*1 p =3 (mod 4).
p=3 p =3 (mod4), (p#3)
dK -3 —-p
f 37L p7l
X . mX 1, n=0
Ok : OF] 3 n>1 1
lef 1
hK, n=20 n
h(D) h3n— 17 n>1 th

is the one described in 1. For simplicity we denote
this cardinality by h'(To(p***1)). Hence (1.1) The-
orem implies that

(5.1)  R'(To(p™ )
| 2n(—4p*tt), p # 3 (mod 4),
) 2(h(=4p* 1Y) + h(—p*™t1)), p=3 (mod 4).
Since
K = Q(v=4p 1) = Q(v=p""1) = Q(V=D),

the class numbers on the right side of (5.1) can be
expressed in terms of h(—p) = hg, the class number
of K. This is based on the well-known formula:

Lo (5)r)

05
where D is a negative integer, = 0,1 (mod 4), K =
Q(VD), dg the discriminant of K, Oy the order of
conductor f in O and (dk /p) is the Kronecker sym-
bol. Note that D = dg f2. The above tables exhibit

(5.2) h(D) = — K __

2n+1 and

values of ingredients of (5.2) for D = —4p

_p2n+1.
Substituting these data in (5.1), we obtain

(5.3) h'(To(p*"*1))
2hkp™,
8hxp",
dhgp",

4,
8hy3n1,

p # 3 (mod 4)
p =3 (mod 8), (p#3)
p =7 (mod 8)
p=3, n=0,
p=3, n>1.
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