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Abstract: Explicit form of Fourier expansion of automorphic forms plays an important role
in the theory. Here we investigate the case of SU(2, 1) and give an explicit formula of generalized
Whittaker functions for the standard representations of the group. Together with a result of [2],
we obtain a form of fully developed Fourier expansion of automorphic forms belonging to arbitrary
standard representations.
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Introduction. In the theory of automorphic
forms, Fourier expansion of modular forms is a fun-
damental tool for investigation. In spite of this im-
portance, the theory of Fourier expansion of auto-
morphic forms seems still in very primitive state.

In this short note we give an explicit form of
fully developed Fourier expansion of modular forms
on SU(2, 1). The peculiarity of the case of SU(2, 1),
different from the case of SL2(R), is that the maxi-
mal unipotent subgroup N is not abelian. It is iso-
morphic to the Heisenberg group and has infinite di-
mensional irreducible unitary representations. To-
gether with unitary characters they constitute the
unitary dual of N . The Fourier expansion of auto-
morphic forms on SU(2, 1) is to consider irreducible
decomposition of the restriction π|N of automorphic
representations π. Therefore we have to handle those
terms which correspond to infinite dimensional rep-
resentations. As for the terms correspond to uni-
tary characters, Whittaker functions, a quite explicit
result is obtained by Koseki-Oda [2]. The remain-
ing problem for our purpose is to consider the gen-
eralized Whittaker functions. We investigate these
functions for standard representations and obtain
an explicit formula for their A-radial parts (Theo-
rem A). Simultaneously, we have the Archimedian
local multiplicity one result. Putting all together, we
lastly obtain an explicit form of the Fourier expan-
sion of automorphic forms not necessarily holomor-
phic (Theorem B). This gives the first published form
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of Fourier expansion of automorphic forms contain-
ing the terms corresponding to infinite dimensional
representations of N . The full paper is already pub-
lished in Journal of Mathematical Sciences The Uni-
versity of Tokyo 6. For details, see [9].

The difficult part of our investigation is the case
where π is of the large discrete series representation
of SU(2, 1), which is most interesting because it is
classically unknown.

Notation. We fix notation used through this
note. Put I2,1 := diag(1, 1,−1). We realize SU(2, 1)
as {g ∈ SL(3,C)| tḡI2,1g = I2,1}. We denote the
group by G and its Lie algebra by g. And gC is the
complexification of g. Let G = NAK be the Iwasawa
decomposition of G. Then in our realization,

K := {diag(k1, k2) ∈ G |
k1 ∈ U(2), k2 ∈ U(1), k2 det k1 = 1}.

A :=

ar :=


r + r−1

2
r − r−1

2
1

r − r−1

2
r + r−1

2


∣∣∣∣∣∣∣∣∣ r ∈ R>0

 .

And the maximal unipotent subgroup N is isomor-
phic to the Heisenberg group H(R2) of dimension
3.

We denote the unitary dual of N by N̂ and a
standard representation of G by π. In our case π is
either a discrete series or a principal series represen-
tation.

Let Γ be an arithmetic subgroup of G, contain-
ing an element
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C with C :=
1√
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1 1√
2
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
and Φ be an automorphic form on G with respect to
Γ belonging to π with K-type (τ, Vτ ).

1. Naive Fourier expansion. Let NΓ :=
N ∩ Γ. As NΓ\N is compact, the decomposition of
the right regular representation RegN of N is given
by

L2(NΓ\N) = ⊕
σ∈N̂

mσ · Sσ,

where (σ,Sσ) is an NΓ-invariant unitary representa-
tion of N and mσ is the multiplicity of the represen-
tation σ in RegN . This reads that a naive Fourier
expansion of a Vτ -valued automorphic form Φ along
N should be

Φ(ng) =
∑
σ∈N̂

mσ∑
i=1

Fπ,τσ,(i)(ng),

where σ runs through the NΓ-invariant unitary rep-
resentations of N . Here Fπ,τσ,(i) is an S(i)

σ ⊗CVτ -valued

smooth function in g ∈ G and S(i)
σ means the i-th

copy of Sσ (i = 1, . . . ,mσ).
Famous Stone-von Neumann theorem tells that

N̂ is exhausted by unitary characters ψu,v parame-
terized by (u, v) ∈ R2 and infinite dimensional ir-
reducible unitary representations ρψs determined by
their nontrivial central characters ψs’s. When σ is
a unitary character, its multiplicity mψu,v is one.
Hence

Φ(ng) =
∑
ψu,v

Fπ,τψu,v
(ng) +

∑
ρψs

mρ∑
i=1

Fπ,τρψs ,(i)
(ng).

The functions Fπ,τψu,v
are the Whittaker functions and

we study Fπ,τρψs ,(i)
.

2. Generalized Whittaker functions.
Naive formulation of the problem is to investigate
intertwiners in HomN (π|N , ρψ) which is isomorphic
to HomG(π, IndGN ρψ) by Frobenius reciprocity. But
this fails in general, because the intertwining space
in question is infinite dimensional. And so we intro-
duce a larger group R containing N to formulate the
problem rightly.

Let P be a minimal parabolic subgroup of G
with Levi decomposition: P = L n N , where L is
the reductive part of P (i.e. Levi subgroup). The
action of L on N by conjugation induces its action
on N̂ . Let S be the stabilizer of ρψ in L. Because the

equivalence class of ρψ in N̂ is completely determined
by its central character, S is the centralizer of Z(N)
and independent of ρψ. It is easily checked that S is
isomorphic to SO(2). Put R := S nN .

We extend representation ρψ of N to R by using
the Weil representation ωψ×ρψ : S̃p1(R)nH(R2) →
Aut(L2(R)). The semidirect product R = S n N is
regarded as a subgroup of S̃p1(R) n H(R2). Let
R̃ be the pullback S̃ n N ∼= S̃O(2) n H(R2) of
R by the covering pr × id : S̃p1(R) n H(R2) �
SL2(R) nH(R2). Then tensoring an odd character
χ̃µ of S̃O(2) to (ωψ × ρψ)|R̃, we have a representa-
tion χ̃µ ⊗ (ωψ × ρψ)|R̃ of R. We denote this repre-
sentation by (η, L2(R)). A character χ̃µ of S̃O(2) is
called odd, if it does not factor through the covering
S̃O(2) � SO(2). That is, the parameter is of the
form µ = m+ 1/2 (m ∈ Z).

Here is a diagram explaining the above construc-
tion

R̃ ↪→ S̃p1(R) nH(R2)
ωψ×ρψ−−−−−→ Aut(L2(R))y pr×id

y
R ↪→ SL2(R) nH(R2).

Definition. We call Hom(gC,K)(π, IndGR η) =:
Iπ,η the space of the algebraic generalized Whit-
taker functionals. Here we identify the underlining
(gC,K)-module of π with π itself.

In order to investigate algebraic generalized
Whittaker functionals l ∈ Iπ,η, we specify a K-
type of π to (τ, Vτ ). Choose an injection ιτ :
τ∗ ↪→ π|K , and pullback l by ιτ . We study func-
tions F ∈ C∞η,τ (R\G/K) := {ϕ : G → S(R) ⊗C

Vτ | ϕ is C∞, ϕ(rgk) = η(r)τ(k)−1.ϕ(g)} represent-
ing ι∗τ l ∈ HomK(τ∗, IndGR η|K) =: Iτπ,η. By defini-
tion, ι∗τ l(v

∗)(g) = 〈v∗, F (g)〉K , v∗ ∈ Vτ∗ . Here 〈 , 〉K
means the canonical pairing of K-modules Vτ∗ and
Vτ , τ∗ the contragredient to τ . We call the above
function F the algebraic generalized Whittaker func-
tion associated to π with K-type τ . This modification
corresponds to a fine expansion Fρ =

∑
χ Fη.

Let (µ1, µ2) be the highest weight of τ then
we can realize Vτ as C-span of {vµk}

dµ
k=0 (dµ :=

µ1 − µ2) with kC action τµ(Z)vµk = (µ1 + µ2)v
µ
k ,

τµ(H ′
12)v

µ
k = (2k − dµ)v

µ
k , τµ(H ′

13)v
µ
k = (k + µ2)v

µ
k ,

τµ(Xβ12)v
µ
k = (k + 1)vµk+1, τµ(Xβ21)v

µ
k = (k −

dµ − 1)vµk−1. Here H ′
12 = diag(1,−1, 0), H ′

13 =
diag(1, 0,−1), Z = 2H ′

13 − H ′
12. As for η we take

{hj | j = 0, 1, 2, . . .} as its basis. Here hj is the j-
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th Hermite function. Note F is determined by the
A-radial part F |A ∈ C∞(A;S(R) ⊗C Vτ ) := {φ :
A → S(R) ⊗C Vτ | C∞-function} because of its
equivariance and the Iwasawa decomposition. Ex-
pand F |A with respect to basis of S(R) and Vτ :
F |A(a) =

∑∞
j=0

∑dµ
k=0 cjk(a)

(
hj⊗vµk

)
. The compati-

bility of S-action and K-action implies the vanishing
of many coefficients cjk.

Lemma. The restriction of F in C∞(A;S(R)
⊗CVτ ) is zero unless (−λ1 +2λ2)/3 ∈ Z and (−λ1 +
2λ2)3 ≥ (1/2) + µ. When the condition above holds,
the A-radial part is written as

F |A(ar) =
dλ∑
k=0

ck(ar)
(
hjk ⊗ vλk

)
,

where ck’s are C∞-functions on A and the index jk
is given by jk = −k + (2λ1 − λ2)/3− (1/2)− µ.

Proof. Calculate F |A(mam−1), m ∈ S = M ,
a ∈ A in two ways. First, since M = ZK(A),
mam−1 = a, therefore F |A(mam−1) = F |A(a).
Second, because M = S ⊂ R and F |A is a
function which comes from F ∈ C∞η,τλ(R\G/K),
F |A(mam−1) = η(m)τλ(m)F |A(a). Compare coef-
ficients of these two, we have the assertion.

3. The case of discrete series represen-
tations. Let t be the compact Cartan subalgebra
{diag(

√
−1h1,

√
−1h2,

√
−1h3) | hi ∈ R, h1 + h2 +

h3 = 0} and βij be a linear form on tC defined by
βij : diag(t1, t2, t3) 7→ ti − tj . Then Harish-Chandra
parameterization claims that there is a bijection be-
tween the set Ξ of all Σ-regular Σ+

c -dominant T -
integral weights and the set Ĝd of all equivalence
classes of discrete series representations of G. Here Σ
and Σ+

c denote the root system associated to (gC, tC)
given by {βij | i 6= j, 1 ≤ i, j ≤ 3} and the positive
compact root system fixed as {β12} respectively. We
can identify Ξ with {Λ = (Λ1,Λ2) ∈ Z⊕2 | Λ1 >

Λ2, Λ1Λ2 6= 0}. We fix Σ+
c compatible positive sys-

tems as Σ+
I = {β12, β13, β23}, Σ+

II = {β12, β32, β13},
Σ+
III = {β12, β32, β31}. Then Ξ decomposes into

three disjoint subsets Ξ+
I = {Λ ∈ Ξ | Λ1 > Λ2 > 0},

Ξ+
II = {Λ ∈ Ξ | Λ1 > 0 > Λ2}, Ξ+

III = {Λ ∈ Ξ |
0 > Λ1 > Λ2} correspond to Σ+

J . We call represen-
tations parameterized by Ξ+

I (resp. Ξ+
III) the holo-

morphic (resp. the anti-holomorphic) discrete series
representations. In the remaining case, representa-
tions whose Harish-Chandra parameters Λ’s belong
to Ξ+

II are the large discrete series representations in
the sense of Vogan [7].

The Blattner formula tells us theK-type decom-
position of the discrete series πΛ as follows. πΛ|K =
⊕µ∈L+

T (Λ)[πΛ : τµ]τµ, where the set L+
T (Λ) of parame-

ters of theK-types of is given by {λ+m1β13+m2β23}
when Λ ∈ Ξ+

I , {λ+m1β13 +m2β32} when Λ ∈ Ξ+
II ,

{λ+m1β31 +m2β32} when Λ ∈ Ξ+
III . Here m1, m2

run through Z≥0. And λ is the highest weight of the
minimal K-type of πΛ and called the Blattner pa-
rameter. About the multiplicity we remark that all
[πΛ : τλ] is one.

Define ∇τ : IndGK τ → IndGK(τ ⊗ AdpC
) as

ϕ 7→
∑4
i=1RXiϕ ⊗ Xi, where {Xi (i = 1, . . . , 4)}

is an orthonormal basis of p with respect to the
Killing form and RX means the right defferential by
X. Clebsch-Gordan’s theorem tells the following de-
composition τµ ⊗ AdpC

∼= ⊕β∈Σnτµ−β . Denote the
projector onto τµ−β by p−β . Here is a variant of
a result of Yamashita which is fundamental for our
purpose.

Proposition 1 ([8]). Assume Λ is far from
walls, then the image of Hom(gC,K)(τ∗λ , IndGR η) in
C∞η,τλ(R\G/K) is characterized by

(D): (p−β · ∇τλ).F = 0 (∀β ∈ Σ+
J ∩ Σn).

Naturally our generalized Whittaker functions
satisfies the above system of defferential equations
(D).

Restricting to the A-radial part, we write down
the action of p−β · ∇τ by the coefficient functions.
Denote the Euler operator r(d/dr) by ∂.

Proposition 2. Expand 2(p−β · ∇τ )F |A(ar)
as
∑dλ−β
k=0 c−βk (ar)

(
hjk ⊗ vλ−βk

)
then the coefficient

functions are given as

c−β23
k = (dλ − k + 1)(∂ + k − λ2 − 2r2s)ck

+k(1 + 2s)rck−1/
√

2,

c−β13
k = (∂ + k − 2dλ − λ2 − 1− 2r2s)ck+1

−(1 + 2s)rck/
√

2,

c−β32
k = (∂ − k + λ2 − 2 + 2r2s)ck

−
√

2(1 + 2s)(jk + 1)rck+1,

c−β31
k = k(∂ − k + λ2 + 2dλ + 1 + 2r2s)ck−1

+(dλ − k + 1)
√

2(1 + 2s)(jk + 1)rck.

We omitted the variable ar of ck’s.
Now let us define the generalized Whittaker

model for the representation π of G with K-type τ
as Whτη(π) := {F ∈ C∞η,τ (R\G/K) | F |A(ar) is of
moderate growth when r → ∞, l(v∗) = 〈v∗, F (·)〉K ,
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l ∈ Iπ,η, v∗ ∈ V ∗τ }. We call the elements in the space
above the generalized Whittaker functions associated
to the representation π with K-type τ .

Let Aη(R\G) be a (gC,K)-submodule of IndGR η
defined by {f ∈ IndGR η | cf,h is right K-finite and
cf,h|A(ar) is of moderate growth when r →∞, ∀h ∈
(η,S(R))}, where cf,h(g) := (f(g), h)η.

Theorem A. The dimension of the space
Hom(gC,K)(πΛ,Aη(R\G)) of generalized Whittaker
functionals is at most one. Moreover

dimC Hom(gC,K)(πΛ,Aη(R\G)) = 1

if and only if `λ = (2λ1 − λ2)/3 ∈ Z, `λ + (1/2) +
µ ≤ 0. Under this condition, the minimal K-type
generalized Whittaker model Whτλη (πΛ) has a base
F τλη whose A-radial part is given as follows.
i-1) πΛ : a large discrete series

F τλη (ar) =
dλ∑
k=0

rdλ+1Wκ,(k−λ1)/2(2|s|r
2)
(
hjk ⊗ vλk

)
,

where κ = {−(λ1−k−1)s−(jk+1)(2s+1)2/4}/2|s|,
s ∈ R\{0}.
i-2) πΛ : a holomorphic discrete series

F τλη (ar) =
dλ∑
k=0

rλ2+kesr
2
·
(
hjk ⊗ vλk

)
,

where s < 0.
i-3) πΛ : an antiholomorphic discrete series

F τλη (ar) =
dλ∑
k=0

r−λ2−ke−sr
2
·
(
hjk ⊗ vλk

)
,

where s > 0.
Proof. In the large discrete series case Λ ∈

ΞII , the system (D) of defferential equations, which
characterizes the minimal K-type F , is equivalent
to c−β13

k = 0, c−β32
k = 0. Eliminating difference

term, we have a defferential equation of second order
{∂2 − (2dλ + 4)∂ +Gk(r)}.ck(ar) = 0 with Gk(r) =
−4s2r4−{4(λ2−k+dλ−1)s+(jk+1)(1+2s)2}r2−
(k− 2dλ − λ2 − 2)(k− λ2 + 2)., which turns into the
classical Whittaker defferential equation. Under the
growth condition of Whτλη , we can find unique so-
lution ck(ar) = (const.) × rdλ+1Wκ,(k−λ1)/2(2|s|r2),
k = 0, . . . , dλ. In other cases Λ ∈ ΞI , ΞIII , we ob-
tain a first order defferential equation for ck whose
solution is essentially given by exponential function.

4. The case of principal series represen-
tations. Let P = NAM be the Langlands decom-
position of P . For characters eν : ar 7→ rν+2 (ν ∈ C)
of A and χλ0 : diag(eiθ, e−2iθ, eiθ) 7→ eiλ0θ (λ0 ∈ Z)
of M , the induced representation πλ0,ν = IndGP (1N ⊗
eν ⊗ χλ0) is called the principal series representa-
tion of G. By the Frobenius duality, the K-type de-
composition is given by πλ0,ν |K = ⊕µ∈L+

T (λ0)
τµ with

L+
T (λ0) = {(−λ0,−λ0) +m1β13 +m2β32 | m1,m2 ≥

0 ∈ Z}. The K-type τ0 := τ(−λ0,−λ0) only has di-
mension one and called the corner K-type of πλ0,ν .
In this case, thanks to the one dimensionality of τ0,
we can obtain the defferential equation satisfied by
the generalized Whittaker function only by calculat-
ing the Casimir operator.

Proposition 3. Let F be the generalized
Whittaker function corresponds to l ∈ Iτ0πλ0,ν ,η

. Then
the coefficient function c0 of F |A satisfies the def-
ferential equation {∂2 − 4∂ + G(r)}.c0(ar) = 0 with
G(r) = −4s2r4 + {−4λ0s − (2j0 + 1)(1 + 4s2)}r2 −
(ν2 − 4).

Theorem A. The irreducible principal series
representation πλ0,ν has multiplicity one property i.e.

dimC Hom(gC,K)(πλ0,ν ,Aη(R\G)) = 1

if and only if (λ0/3)− µ− (1/2) ∈ Z≥0. Under this
condition, the corner K-type generalized Whittaker
model Whτ0η (πλ0,ν) has a base F τ0η whose A-radial
part is given by

F τ0η (ar) = rWκ,ν/2(2|s|r2) ·
(
hj0 ⊗ v0

)
,

where κ = {−λ0s − (2j0 + 1)(4s2 + 1)/4}/2|s| and
the index j0 is given by j0 = (λ0/3)− µ− (1/2).

5. The Fourier expansion. Now we can
give an explicit form of the Fourier expansion of an
automorphic form belonging to an arbitrary stan-
dard representation π with special K-type.

Theorem B. Let Φ be as above.
i) When π is a discrete series representation πΛ

take the minimal K-type τλ as τ .
i-1) The case of large discrete series

Φ(nar) = C Φ
0,0 · rdλ+2 · 1N (n)vλλ1

+
′∑

(`,`′)∈Z2

( dλ∑
k=0

CΦ,k
`,`′ · r

dλ+3/2W0,k−λ1(4πLr)

× ψ2π`,2π`′(n)vλk
)
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+
′∑

`∈Z

2|`|∑
i=1

( dλ∑
k=0

∑
µ∈(1/2)Z\Z

C Φ, k
µ,`, (i)

× rdλ+1Wκ,(k−λ1)/2(4π|`|r
2) · θ`, (i)jk

(n)vλk
)
,

where κ = {−(λ2−k+dλ−1)2π`− (jk+1)(4π`+
1)2/4}/4π|`| and L =

√
`2 + (`′)2.

i-2) The case of holomorphic discrete series

Φ(nar) =
∞∑

−`=0

2|`|∑
i=1

( dλ∑
k=0

∑
µ∈(1/2)Z\Z

C Φ, k
µ,`, (i)

× rλ2+ke2π`r
2
· θ`, (i)jk

(n)vλk
)
.

i-3) The case of antiholomorphic discrete series

Φ(nar) =
∞∑
`=0

2∑̀
i=1

( dλ∑
k=0

∑
µ∈(1/2)Z\Z

C Φ, k
µ,`, (i)

× r−λ2−ke−2π`r2 · θ`, (i)jk
(n)vλk

)
.

In this case, the index µ runs over half integers
which satisfy jk ≥ 0.

ii) When π is a principal series representation
πλ0,ν , take the corner K-type τ0 as τ .

Φ(nar) = C Φ
0,0 · rν+2 · 1N (n)v0

+
′∑

(`,`′)∈Z2

C Φ
`,`′ · r3/2W0,ν(4πLr) · ψ2π`(n)v0

+
′∑

`∈Z

2|`|∑
i=1

( ∑
µ∈(1/2)Z\Z

C Φ
µ,`, (i) · rWκ,(ν/2)(4π|`|r2)

× θ
`, (i)
j0

(n)v0
)
,

where κ = {−λ02π`−(2j0+1)(16π2`2+1)2/4}/4π|`|.
In this case, the index µ runs over half integers such
that µ ≤ (λ0/3)− (1/2).

Here the generalized theta functions θ
`, (i)
j are

given by

θ
`, (i)
j

(
exp(xE2,+ + yE2,− + zE1)

)
=
∑
k∈Z

hj(x+ dk) · e[(i+ 2|`|k)y + `xy + `z],

with dk = (i+ 2|`|k)/(2`) and e[X] = e2π
√
−1X . We

call C Φ
`,`′ ’s, C

Φ, k
µ,`, (i)’s the Fourier coefficients of Φ.

Proof. Almost all is clear from the result of
[2] and Theorem A. The remaining task for us is
construction of the base {θρψs (i)

j }j∈N of the i-th copy

S(i)
ρψs ⊂ L2(NΓ\N) of Sρψs corresponding to {hj} by

an N -intertwiner T : S(R) → L2(NΓ\N). For the
purpose, we only have to write down the Hermite
descending operator by elements of U(n) and trans-
late it by T . Then we have the defferential equation
which is satisfied by the image θρψs (i)

0 = T (h0) of
h0. Using quasi-periodicity of θρψs (i)

0 come from NΓ-
invariantness, we can solve the defferential equation
and obtain the explicit form of θρψs (i)

0 . By the as-
sumption on Γ, we have the multiplicity mρ = 2|`|.
Next, by using the raising operator recursively, we
obtain the form of θρψs (i)

j = T (hj) as above.
Remark. The case of holomorphic or antiholo-

morphic discrete series, our discussion of the Fourier
expansion of automorphic form accords with the
Fourier-Jacobi expansion obtained by Shintani [6],
Murase-Sugano [3].
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