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Abstract:

Using Cohen’s construction of defining polynomials for a cyclic group of odd

prime order, we define a polynomial with some parameters which generates cyclic extensions of a
given odd prime degree, and prove it to be generic in the sense as defined below.
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1. Introduction. Let k be a field and & a
finite group. A polynomial over k£ with some pa-
rameters is called a generic polynomial for & if it
generates all Galois extensions with Galois group &
over an arbitrary extension of k by specializations of
the parameters. Let C; be the cyclic group of an odd
prime order [. The aim of this paper is to investi-
gate generic polynomials for C; over k of character-
istic other than [. The result of Saltman [4] implies
the existence of a polynomial of this kind. The sim-
plest example is given by Kummer theory. In fact,
if k contains an I-th root of unity then X! — T is
a generic polynomial with one parameter T for Cj.
Moreover, in case k = Q, an explicit construction
for a generic polynomial for C; was essentially given
by Smith [6]. On the other hand, Cohen [1] gave
a method of generating cyclic polynomials of degree
I, by using a simple tool of Kummer theory, which
seems to us more natural and more easily compre-
hensible than Smith’s. In the present paper, largely
following Cohen’s method, we will construct a poly-
nomial over k of degree [ with some parameters, and
prove this polynomial to be generic over k for Cj.
Our result can be regarded a natural generalization
of Smith [6] as well as of the above fact on Kummer
theory for the group Cj.

2. Definition of cyclic polynomials.
Throughout this paper, we will fix an odd prime
[. In this section, we summarize the results on the
defining polynomials for cyclic extensions of degree [
described in Cohen [1, Ch. 5].

Let k£ be a field of characteristic other than .
Let ¢ be a fixed primitive [-th root of unity and put
F =k(¢). Put V = F*/F*! which will be regarded
as a vector space over ¥, = Z/IZ. Let F* -V, a+—
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@ be the canonical surjection. Any cyclic extension
of degree [ over F is given in the form F({/a) for
some « € F*. By Kummer theory, this induces
a bijection between such cyclic extensions and one-
dimensional subspaces of V. Now the Galois group G
of the extension F'/k is isomorphic to a subgroup of
F under the isomorphism y from G into F by (7 =
¢X(9) (g € G). Let d be the order of G, that is, d =
[F': k]. The Galois group G acts on V, and therefore
V is an F;[G]-module. Define an idempotent ¢ of the
group algebra F[G] by

ceCG

Then the image V¢ of the F;-linear transformation e
on V is the eigenspace of the generator o¢ of G with
the eigenvalue x(op). Thus we have

acVe «— a’=a"" (ceq)

for a € F'*.

The following two propositions and the defini-
tion of cyclic polynomials are all included in Theo-
rem 5.3.5 of [1]; nevertheless, we shall restate a par-
tial result of this theorem as Proposition 2, and give
a proof, because we will use the same discussion later
on.

Proposition 1. If K is a cyclic extension
over k of degree I, and « is an element of F* such
that K(¢) = F({/a), then we have & € V=. Con-
versely, for a € F* satisfying & € Ve \ {1}, F(Va)
is an abelian extension over k of degree dl which con-
tains a unique cyclic extension K over k of degree [.

This implies that there is a bijection between
cyclic extensions over k of degree [ and one-
dimensional subspaces of V<.
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Proposition 2. Let K be a cyclic extension
over k of degree | and take o € F* such that
K({) = F(V/a). Set A = {/a and L = K(().
Then K = k (TrL/K(A)) and all the conjugates of
Trp ik (A) over k are given by Trp x (A(i) 0<i<
1—1).

Proof. We identify the Galois group of L/K
with G. For each ¢ € G, take an integer z, €
{1,2,...,1—1} with x(0) = 2, mod I. Since & € V¢
by Proposition 1, we have (A""”")l =q° % ¢ FXL
Thus there is 7, € F* such that A = 7, A% for
o € G. Then we have

Trp x(A) = Z Yo A" & kK,
oeG
because {%,}oeq C {1,2,...,l—1}and 1, 4, A% ...,
Al=1 are linearly independent over F'. Hence we have
K = k(Try/k(A)). It is obvious that Tryx(AC")
are the conjugates of Try, /i (A) over k. Moreover, if
0<i#j<l-—1then

Trp x (ACY) — Try r (A7)
= Z Vo (CPF7 = (7)) A%e £ 0

ceCG
which completes the proof. U]
Under the notations in Proposition 2, we denote
by f(X;a) the minimal polynomial of Try, /x (A) over
k, that is,
1-1
F(Xa) = JT(X = Trp e (AC)).
i=0
Also when o € F*!, replacing L, K by F,k respec-
tively, we define f(X;«) in the same form; the prod-
uct of linear factors X — Trp/;,(ACY) (0 <@ <1—1).
Obviously, f(X;«) depends only on « and not on
the choice of A.
Let

& ={e€Z|G] | sc =emod! for some s € F}.

For any e € £ and 8 € F*, we can define a polyno-
mial f(X;3°). In case ¢ ¢ F*!  there is a unique
subfield K of L = F(A) which is cyclic over k of de-
gree [, where A' = 3°. Note that the cyclic extension
generated by f(X;3¢) is independent of the choice
ofec&.

Now we take a basis (w,)seq of F/k. Let
T = (T,)scc be independent transcendentals over
k indexed by G. The Galois group of F(T)/k(T) is
canonically isomorphic to G. Then we can apply the
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above discussion to define a polynomial over k(T') by
9(X;T) = f(X; B(T)°),

where

B(T) = w,T, € F(T).
ceG
Putting 8 = ((t) for t = (t,)req € k%, we get again
F(X;8°) = g(X;t) € k[X]. Therefore all the cyclic
extensions over k of degree [ are parameterized by
g(X;T). Thus we have the following result.

Proposition 3. Any cyclic extension K over
k of degree | may be obtained as the splitting field of
g(X;t) over k for some t € k?.

Remark. Smith [6] and Dentzer [2] discuss the
cyclic polynomials of general odd degrees over Q. If
we restrict the degrees to be prime, say [, then the
polynomials they have constructed are obtained from
our g(X;T). Consider k to be Q. In this case we
haved =1—1and G ~ F;". Choosee =3 _,e,0 €
& with e, € Z satisfying

x(c™) =e;modl and 1<e, <I—1,
and a basis of F/k such as

{wo}oEG = {Cz 427 RS Clil}'

Then it can be verified that g(X;T') coincides with

the polynomial that Smith and Dentzer have treated.

Though the degrees are restricted to primes, our con-

struction seems more natural to us.

3. A generic polynomial. Wewill fixe € £
and a basis (w,)seq of F/k. We have constructed
with them the polynomial g(X;T) € k(T)[X] that
parameterizes all the cyclic extension over k of degree
. Our goal of this section is to prove that g(X;T)
is generic over k, in other words, ¢g(X;T) has the
following properties:

(A) The Galois group of g(X;T) over k(T) is cyclic
of order .

(B) For any field k; containing k as a subfield and
any cyclic extension K7 of degree [ over k1, there
exists t € k{ such that K, is the splitting field
of g(X;t) over k.

(For the definition of the term “generic” in a more

general situation, see [3]-[6].)

Theorem. The polynomial g(X;T) is generic
over k, i.e., g(X;T) has the properties (A) and (B).

Before proving the theorem, we analyze the
roots of the polynomial g(X;T) and its specializa-
tion. We review the discussion in the proof of Propo-
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sition 2 and the definition of f(X;3¢). Let A be an
element of the algebraic closure of k(T') satisfying
Al = B(T)¢, and put L = F(T)(A). Let K be the
intermediate field of L/k(T) such that [L : K] = d.
The Galois group of E/ K is identified with G. Let
o € G. Take integers 1 < z, < [ — 1 such that
X(0) = x5, mod I. Then there is the rational func-
tion 4, (T) € F(T) determined by A7 = 7, (T)A"".
It is not difficult to show that 4, (T) is independent
of the choice of A. Using these notations, we obtain
the roots of g(X;T) in the form

Tr g (AQ) = Y 4(T)A™ (7, 0<j<i-1
ceG

We now denote by B, (T') the linear form given by

B(T)? for o € G:
B,(T) =Y _ wiT,.

T€EG
Write

e= Zego with e, € Z.
ceG

Then we have

A= (1) = [] Bo(T).
ceG

We need the following two lemmas.

Lemma 1. Any coefficient of ¢g(X;T) is
given in the form of a finite sum qiﬁ(T)“i, where
q; are elements of the prime field contained in k and

Proof. See Cohen [1, Proposition 5.3.9]. ]

Lemma 2. Let ky be a field containing k as a
subfield and t € k{. Assume that B,(t) # 0 for any
oc€eq.

(1) The coefficients of g(X;T) can be defined at
t, and therefore we obtain a polynomial g(X;t)
over kj.

(2) For each o € G, the rational function 7, (T) can
be defined at t, and 7, (t) # 0.

(3) Let Ay be an element of the algebraic closure of
k1 satisfying

AL =T] B ().
oceG
Then all the roots of g(X;t) are given by
D A®)AT7, 0<j<i-1
ceG

Proof. (1) From Lemma 1, it suffices to show
that 5(t)* can be defined for any u € Z[G]. But,
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writing v = Y _u,0 (us € Z), we confirm that
B(T) = [I, Bo(T)"s can be defined at t satisfying
our assumption, also when u, is negative for some
o.

(2) Since A, (T)! = Alo—%o) = F(T)*@=%) and
e(c — z5) = 0 (mod l), there exist j, € F° and
vy € Z[G] such that 5,(T) = (= 3(T)"=. Therefore,
in the same manner as in (1), we see that 4, (¢) can
be defined, and that 4, (¢) # 0.

(3) By specialization, our assertion follows from the
above argument on the roots of g(X;T). [

We are now ready to prove the main theorem.

Proof of Theorem. Let W be the matrix
(w2)e,rec (index the rows by o, the columns by 7).
We note that W is regular, since F/k is separable.
Thus the d linear forms B,(T') (¢ € G) are distinct
from each other. Therefore B(T)¢ = [] B,(T)% ¢
F(T)*!" which implies the property (A). Next, let k;
be any field extension of k and K1 /k; any cyclic ex-
tension of degree I. To show the property (B), we
have to find out t = (t,)seq in k{ such that K; is
the splitting field of g(X;t) over k1. Let Fy = k1(C)
and L1 = K1(¢). The Galois group H of the exten-
sion F /k; is regarded as a subgroup of G naturally.

Put
e(H) = Z €50.

oceH

Since L; is abelian over ki, there is 81 € F}* such
that Ly = Fy(A;) where At = 3¢ by Proposition
1. For 0 € G, set

h {ﬁ‘f
1

With the d-dimensional column vector b =
(by)occ € F{ and the regular matrix W = (w?),
we put

o€ H,
o¢H.

t=W"1b.

We claim that ¢ € k{. To see this, we write t =
(CWW)~L('Wb). Tt is well-known that the entries of
YWW belong to k. On the other hand, the entries of
Wb belong to ki, because

dwibe = > wis+ > w]

TeG TeEH T¢H

=D wp(B] —1)+ Y wp

TEH TeEG
= Trpl/kl (wa'(/Bl — 1)) + TI‘F/k(’LUJ).
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Now the relation Wt = b shows
B,(t)=b,#0 (o€ Q).
Moreover,

Ay =g = 1] a7 =

oc€eH

I1 v =TI B-(t).

oelG ceG

Then, by Lemma 2, 4,(t) # 0 and all the roots of
g(X;t) are given by

;=Y A t)A}"¢7, 0<j<i-1.
oceG
Since 4, (t) € F* and 1, A1, A,..., A1 are linearly
independent over Fy, we obtain L; = Fj(6;), which
yields
| = [Ll : Fl] = [Fl(ﬂj) : Fl]
< [k1(0;) : k1] < degg(X;t) =1,

and therefore [ki(6;) : k1] = I. Hence K; = ky(6;)
for any j. This completes the proof. L]

Remark. If H = G, then it follows directly
from Proposition 3 that K is the splitting field of

[Vol. T6(A),

g(X;t) over ki for some t € k{, because (w,)seq
remains a basis of F} over ki. So the essential dif-
ficulty of showing this fact in general is in the case
where H is a proper subgroup of G.
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