On generic cyclic polynomials of odd prime degree

By Shin Nakano

Department of Mathematics, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo 171-8588 (Communicated by Shokichi Iyanaga, M. J. A., Dec. 12, 2000)

Abstract: Using Cohen's construction of defining polynomials for a cyclic group of odd prime order, we define a polynomial with some parameters which generates cyclic extensions of a given odd prime degree, and prove it to be generic in the sense as defined below.

Key words: Generic polynomial; cyclic extension.

1. Introduction. Let k be a field and \mathfrak{G} a finite group. A polynomial over k with some parameters is called a generic polynomial for \mathfrak{G} if it generates all Galois extensions with Galois group & over an arbitrary extension of k by specializations of the parameters. Let C_l be the cyclic group of an odd prime order l. The aim of this paper is to investigate generic polynomials for C_l over k of characteristic other than l. The result of Saltman [4] implies the existence of a polynomial of this kind. The simplest example is given by Kummer theory. In fact, if k contains an l-th root of unity then $X^l - T$ is a generic polynomial with one parameter T for C_l . Moreover, in case $k = \mathbf{Q}$, an explicit construction for a generic polynomial for C_l was essentially given by Smith [6]. On the other hand, Cohen [1] gave a method of generating cyclic polynomials of degree l, by using a simple tool of Kummer theory, which seems to us more natural and more easily comprehensible than Smith's. In the present paper, largely following Cohen's method, we will construct a polynomial over k of degree l with some parameters, and prove this polynomial to be generic over k for C_l . Our result can be regarded a natural generalization of Smith [6] as well as of the above fact on Kummer theory for the group C_l .

2. Definition of cyclic polynomials.

Throughout this paper, we will fix an odd prime l. In this section, we summarize the results on the defining polynomials for cyclic extensions of degree l described in Cohen [1, Ch. 5].

Let k be a field of characteristic other than l. Let ζ be a fixed primitive l-th root of unity and put $F = k(\zeta)$. Put $V = F^{\times}/F^{\times l}$ which will be regarded as a vector space over $\mathbf{F}_l = \mathbf{Z}/l\mathbf{Z}$. Let $F^{\times} \to V$, $\alpha \mapsto$ $\bar{\alpha}$ be the canonical surjection. Any cyclic extension of degree l over F is given in the form $F(\sqrt[l]{\alpha})$ for some $\alpha \in F^{\times}$. By Kummer theory, this induces a bijection between such cyclic extensions and one-dimensional subspaces of V. Now the Galois group G of the extension F/k is isomorphic to a subgroup of \mathbf{F}_l^{\times} under the isomorphism χ from G into \mathbf{F}_l^{\times} by $\zeta^{\sigma} = \zeta^{\chi(\sigma)}$ ($\sigma \in G$). Let d be the order of G, that is, d = [F:k]. The Galois group G acts on G, and therefore G is an G in G in G is an G in G

$$\varepsilon = \frac{1}{d} \sum_{\sigma \in G} \chi(\sigma^{-1}) \sigma.$$

Then the image V^{ε} of the \mathbf{F}_l -linear transformation ε on V is the eigenspace of the generator σ_0 of G with the eigenvalue $\chi(\sigma_0)$. Thus we have

$$\bar{\alpha} \in V^{\varepsilon} \iff \bar{\alpha}^{\sigma} = \bar{\alpha}^{\chi(\sigma)} \quad (\sigma \in G)$$

for $\alpha \in F^{\times}$.

The following two propositions and the definition of cyclic polynomials are all included in Theorem 5.3.5 of [1]; nevertheless, we shall restate a partial result of this theorem as Proposition 2, and give a proof, because we will use the same discussion later on.

Proposition 1. If K is a cyclic extension over k of degree l, and α is an element of F^{\times} such that $K(\zeta) = F(\sqrt[l]{\alpha})$, then we have $\bar{\alpha} \in V^{\varepsilon}$. Conversely, for $\alpha \in F^{\times}$ satisfying $\bar{\alpha} \in V^{\varepsilon} \setminus \{1\}$, $F(\sqrt[l]{\alpha})$ is an abelian extension over k of degree dl which contains a unique cyclic extension K over k of degree l.

This implies that there is a bijection between cyclic extensions over k of degree l and one-dimensional subspaces of V^{ε} .

Proposition 2. Let K be a cyclic extension over k of degree l and take $\alpha \in F^{\times}$ such that $K(\zeta) = F(\sqrt[l]{\alpha})$. Set $A = \sqrt[l]{\alpha}$ and $L = K(\zeta)$. Then $K = k\left(\operatorname{Tr}_{L/K}(A)\right)$ and all the conjugates of $\operatorname{Tr}_{L/K}(A)$ over k are given by $\operatorname{Tr}_{L/K}\left(A\zeta^{i}\right)$ $(0 \leq i \leq l-1)$.

Proof. We identify the Galois group of L/K with G. For each $\sigma \in G$, take an integer $x_{\sigma} \in \{1, 2, \ldots, l-1\}$ with $\chi(\sigma) = x_{\sigma} \mod l$. Since $\bar{\alpha} \in V^{\varepsilon}$ by Proposition 1, we have $(A^{\sigma-x_{\sigma}})^l = \alpha^{\sigma-x_{\sigma}} \in F^{\times l}$. Thus there is $\gamma_{\sigma} \in F^{\times}$ such that $A^{\sigma} = \gamma_{\sigma} A^{x_{\sigma}}$ for $\sigma \in G$. Then we have

$$\operatorname{Tr}_{L/K}(A) = \sum_{\sigma \in G} \gamma_{\sigma} A^{x_{\sigma}} \notin k,$$

because $\{x_{\sigma}\}_{{\sigma}\in G}\subset\{1,2,\ldots,l-1\}$ and $1,A,A^2,\ldots,A^{l-1}$ are linearly independent over F. Hence we have $K=k(\operatorname{Tr}_{L/K}(A))$. It is obvious that $\operatorname{Tr}_{L/K}(A\zeta^i)$ are the conjugates of $\operatorname{Tr}_{L/K}(A)$ over k. Moreover, if $0\leq i\neq j\leq l-1$ then

$$\operatorname{Tr}_{L/K}(A\zeta^{i}) - \operatorname{Tr}_{L/K}(A\zeta^{j})$$

$$= \sum_{\sigma \in G} \gamma_{\sigma}(\zeta^{ix_{\sigma}} - \zeta^{jx_{\sigma}})A^{x_{\sigma}} \neq 0$$

which completes the proof.

Under the notations in Proposition 2, we denote by $f(X; \alpha)$ the minimal polynomial of $\text{Tr}_{L/K}(A)$ over k, that is,

$$f(X;\alpha) = \prod_{i=0}^{l-1} (X - \operatorname{Tr}_{L/K}(A\zeta^i)).$$

Also when $\alpha \in F^{\times l}$, replacing L, K by F, k respectively, we define $f(X; \alpha)$ in the same form; the product of linear factors $X - \operatorname{Tr}_{F/k}(A\zeta^i)$ $(0 \le i \le l-1)$. Obviously, $f(X; \alpha)$ depends only on α and not on the choice of A.

Let

$$\mathcal{E} = \{ e \in \mathbf{Z}[G] \mid s\varepsilon = e \bmod l \text{ for some } s \in \mathbf{F}_l^{\times} \}.$$

For any $e \in \mathcal{E}$ and $\beta \in F^{\times}$, we can define a polynomial $f(X; \beta^e)$. In case $\beta^e \notin F^{\times l}$, there is a unique subfield K of L = F(A) which is cyclic over k of degree l, where $A^l = \beta^e$. Note that the cyclic extension generated by $f(X; \beta^e)$ is independent of the choice of $e \in \mathcal{E}$.

Now we take a basis $(w_{\sigma})_{\sigma \in G}$ of F/k. Let $T = (T_{\sigma})_{\sigma \in G}$ be independent transcendentals over k indexed by G. The Galois group of F(T)/k(T) is canonically isomorphic to G. Then we can apply the

above discussion to define a polynomial over k(T) by

$$g(X; \mathbf{T}) = f(X; \tilde{\beta}(\mathbf{T})^e),$$

where

$$\tilde{\beta}(\mathbf{T}) = \sum_{\sigma \in G} w_{\sigma} T_{\sigma} \in F(\mathbf{T}).$$

Putting $\beta = \tilde{\beta}(t)$ for $t = (t_{\sigma})_{\sigma \in G} \in k^d$, we get again $f(X; \beta^e) = g(X; t) \in k[X]$. Therefore all the cyclic extensions over k of degree l are parameterized by g(X; T). Thus we have the following result.

Proposition 3. Any cyclic extension K over k of degree l may be obtained as the splitting field of $g(X; \mathbf{t})$ over k for some $\mathbf{t} \in k^d$.

Remark. Smith [6] and Dentzer [2] discuss the cyclic polynomials of general odd degrees over \mathbf{Q} . If we restrict the degrees to be prime, say l, then the polynomials they have constructed are obtained from our $g(X; \mathbf{T})$. Consider k to be \mathbf{Q} . In this case we have d = l-1 and $G \simeq \mathbf{F}_l^{\times}$. Choose $e = \sum_{\sigma \in G} e_{\sigma} \sigma \in \mathcal{E}$ with $e_{\sigma} \in \mathbf{Z}$ satisfying

$$\chi(\sigma^{-1}) = e_{\sigma} \mod l \quad \text{and} \quad 1 \le e_{\sigma} \le l - 1,$$

and a basis of F/k such as

$$\{w_{\sigma}\}_{\sigma\in G} = \{\zeta, \zeta^2, \dots, \zeta^{l-1}\}.$$

Then it can be verified that $g(X; \mathbf{T})$ coincides with the polynomial that Smith and Dentzer have treated. Though the degrees are restricted to primes, our construction seems more natural to us.

- **3.** A generic polynomial. We will fix $e \in \mathcal{E}$ and a basis $(w_{\sigma})_{\sigma \in G}$ of F/k. We have constructed with them the polynomial $g(X;T) \in k(T)[X]$ that parameterizes all the cyclic extension over k of degree l. Our goal of this section is to prove that g(X;T) is generic over k, in other words, g(X;T) has the following properties:
- (A) The Galois group of $g(X; \mathbf{T})$ over $k(\mathbf{T})$ is cyclic of order l.
- (B) For any field k_1 containing k as a subfield and any cyclic extension K_1 of degree l over k_1 , there exists $t \in k_1^d$ such that K_1 is the splitting field of g(X;t) over k_1 .

(For the definition of the term "generic" in a more general situation, see [3]–[6].)

Theorem. The polynomial g(X; T) is generic over k, i.e., g(X; T) has the properties (A) and (B).

Before proving the theorem, we analyze the roots of the polynomial g(X; T) and its specialization. We review the discussion in the proof of Propo-

sition 2 and the definition of $f(X; \beta^e)$. Let \tilde{A} be an element of the algebraic closure of k(T) satisfying $\tilde{A}^l = \tilde{\beta}(T)^e$, and put $\tilde{L} = F(T)(\tilde{A})$. Let \tilde{K} be the intermediate field of $\tilde{L}/k(T)$ such that $[\tilde{L}:\tilde{K}]=d$. The Galois group of \tilde{L}/\tilde{K} is identified with G. Let $\sigma \in G$. Take integers $1 \leq x_{\sigma} \leq l-1$ such that $\chi(\sigma) = x_{\sigma} \mod l$. Then there is the rational function $\tilde{\gamma}_{\sigma}(T) \in F(T)$ determined by $\tilde{A}^{\sigma} = \tilde{\gamma}_{\sigma}(T)\tilde{A}^{x_{\sigma}}$. It is not difficult to show that $\tilde{\gamma}_{\sigma}(T)$ is independent of the choice of \tilde{A} . Using these notations, we obtain the roots of g(X;T) in the form

$$\operatorname{Tr}_{\tilde{L}/\tilde{K}}(\tilde{A}\zeta^{j}) = \sum_{\sigma \in G} \tilde{\gamma}_{\sigma}(\boldsymbol{T})\tilde{A}^{x_{\sigma}}\zeta^{j\sigma}, \quad 0 \leq j \leq l-1.$$

We now denote by $B_{\sigma}(T)$ the linear form given by $\tilde{\beta}(T)^{\sigma}$ for $\sigma \in G$:

$$B_{\sigma}(\mathbf{T}) = \sum_{\tau \in G} w_{\tau}^{\sigma} T_{\tau}.$$

Write

$$e = \sum_{\sigma \in G} e_{\sigma} \sigma$$
 with $e_{\sigma} \in \mathbf{Z}$.

Then we have

$$\tilde{A}^l = \tilde{\beta}(T)^e = \prod_{\sigma \in G} B_{\sigma}(T)^{e_{\sigma}}.$$

We need the following two lemmas.

Lemma 1. Any coefficient of $g(X; \mathbf{T})$ is given in the form of a finite sum $\sum q_i \tilde{\beta}(\mathbf{T})^{u_i}$, where q_i are elements of the prime field contained in k and $u_i \in \mathbf{Z}[G]$.

Proof. See Cohen [1, Proposition 5.3.9].

Lemma 2. Let k_1 be a field containing k as a subfield and $\mathbf{t} \in k_1^d$. Assume that $B_{\sigma}(\mathbf{t}) \neq 0$ for any $\sigma \in G$.

- (1) The coefficients of $g(X; \mathbf{T})$ can be defined at \mathbf{t} , and therefore we obtain a polynomial $g(X; \mathbf{t})$ over k_1 .
- (2) For each $\sigma \in G$, the rational function $\tilde{\gamma}_{\sigma}(\mathbf{T})$ can be defined at \mathbf{t} , and $\tilde{\gamma}_{\sigma}(\mathbf{t}) \neq 0$.
- (3) Let A_1 be an element of the algebraic closure of k_1 satisfying

$$A_1^l = \prod_{\sigma \in G} B_{\sigma}(\boldsymbol{t})^{e_{\sigma}}.$$

Then all the roots of g(X; t) are given by

$$\sum_{\sigma \in G} \tilde{\gamma}_{\sigma}(t) A_1^{x_{\sigma}} \zeta^{j\sigma}, \quad 0 \le j \le l - 1.$$

Proof. (1) From Lemma 1, it suffices to show that $\tilde{\beta}(t)^u$ can be defined for any $u \in \mathbf{Z}[G]$. But,

writing $u = \sum_{\sigma} u_{\sigma} \sigma$ $(u_{\sigma} \in \mathbf{Z})$, we confirm that $\tilde{\beta}(\mathbf{T})^u = \prod_{\sigma} B_{\sigma}(\mathbf{T})^{u_{\sigma}}$ can be defined at \mathbf{t} satisfying our assumption, also when u_{σ} is negative for some σ .

- (2) Since $\tilde{\gamma}_{\sigma}(\mathbf{T})^{l} = \tilde{A}^{l(\sigma-x_{\sigma})} = \tilde{\beta}(\mathbf{T})^{e(\sigma-x_{\sigma})}$ and $e(\sigma-x_{\sigma}) \equiv 0 \pmod{l}$, there exist $j_{\sigma} \in \mathbf{F}_{l}^{\times}$ and $v_{\sigma} \in \mathbf{Z}[G]$ such that $\tilde{\gamma}_{\sigma}(\mathbf{T}) = \zeta^{j_{\sigma}}\tilde{\beta}(\mathbf{T})^{v_{\sigma}}$. Therefore, in the same manner as in (1), we see that $\tilde{\gamma}_{\sigma}(t)$ can be defined, and that $\tilde{\gamma}_{\sigma}(t) \neq 0$.
- (3) By specialization, our assertion follows from the above argument on the roots of g(X;T).

We are now ready to prove the main theorem.

Proof of Theorem. Let W be the matrix $(w_{\tau}^{\sigma})_{\sigma,\tau\in G}$ (index the rows by σ , the columns by τ). We note that W is regular, since F/k is separable. Thus the d linear forms $B_{\sigma}(T)$ ($\sigma \in G$) are distinct from each other. Therefore $\tilde{\beta}(T)^e = \prod B_{\sigma}(T)^{e_{\sigma}} \notin F(T)^{\times l}$ which implies the property (A). Next, let k_1 be any field extension of k and K_1/k_1 any cyclic extension of degree l. To show the property (B), we have to find out $t = (t_{\sigma})_{\sigma \in G}$ in k_1^d such that K_1 is the splitting field of g(X;t) over k_1 . Let $F_1 = k_1(\zeta)$ and $L_1 = K_1(\zeta)$. The Galois group H of the extension F_1/k_1 is regarded as a subgroup of G naturally. Put

$$e(H) = \sum_{\sigma \in H} e_{\sigma} \sigma.$$

Since L_1 is abelian over k_1 , there is $\beta_1 \in F_1^{\times}$ such that $L_1 = F_1(A_1)$ where $A_1^l = \beta_1^{e(H)}$ by Proposition 1. For $\sigma \in G$, set

$$b_{\sigma} = \begin{cases} \beta_1^{\sigma} & \sigma \in H, \\ 1 & \sigma \notin H. \end{cases}$$

With the d-dimensional column vector $\boldsymbol{b} = (b_{\sigma})_{\sigma \in G} \in F_1^d$ and the regular matrix $W = (w_{\tau}^{\sigma})$, we put

$$\boldsymbol{t} = W^{-1}\boldsymbol{b}.$$

We claim that $t \in k_1^d$. To see this, we write $t = ({}^tWW)^{-1}({}^tWb)$. It is well-known that the entries of tWW belong to k. On the other hand, the entries of tWb belong to k_1 , because

$$\begin{split} \sum_{\tau \in G} w_{\sigma}^{\tau} b_{\tau} &= \sum_{\tau \in H} w_{\sigma}^{\tau} \beta_{1}^{\tau} + \sum_{\tau \notin H} w_{\sigma}^{\tau} \\ &= \sum_{\tau \in H} w_{\sigma}^{\tau} (\beta_{1}^{\tau} - 1) + \sum_{\tau \in G} w_{\sigma}^{\tau} \\ &= \mathrm{Tr}_{F_{1}/k_{1}} (w_{\sigma}(\beta_{1} - 1)) + \mathrm{Tr}_{F/k} (w_{\sigma}). \end{split}$$

Now the relation Wt = b shows

$$B_{\sigma}(\mathbf{t}) = b_{\sigma} \neq 0 \quad (\sigma \in G).$$

Moreover.

$$A_1^l = \beta_1^{e(H)} = \prod_{\sigma \in H} \beta_1^{\sigma e_\sigma} = \prod_{\sigma \in G} b_\sigma^{e_\sigma} = \prod_{\sigma \in G} B_\sigma(t)^{e_\sigma}.$$

Then, by Lemma 2, $\tilde{\gamma}_{\sigma}(t) \neq 0$ and all the roots of g(X;t) are given by

$$\theta_j = \sum_{\sigma \in G} \tilde{\gamma}_{\sigma}(t) A_1^{x_{\sigma}} \zeta^{j\sigma}, \quad 0 \le j \le l-1.$$

Since $\tilde{\gamma}_{\sigma}(t) \in F_1^{\times}$ and $1, A_1, A_1^2, \dots, A_1^{l-1}$ are linearly independent over F_1 , we obtain $L_1 = F_1(\theta_j)$, which yields

$$l = [L_1 : F_1] = [F_1(\theta_j) : F_1]$$

 $\leq [k_1(\theta_j) : k_1] \leq \deg g(X; \mathbf{t}) = l,$

and therefore $[k_1(\theta_j):k_1]=l$. Hence $K_1=k_1(\theta_j)$ for any j. This completes the proof.

Remark. If H = G, then it follows directly from Proposition 3 that K_1 is the splitting field of

g(X; t) over k_1 for some $t \in k_1^d$, because $(w_{\sigma})_{{\sigma} \in G}$ remains a basis of F_1 over k_1 . So the essential difficulty of showing this fact in general is in the case where H is a proper subgroup of G.

References

- [1] Cohen, H.: Advanced Topics in Computational Number Theory. Grad. Texts in Math., vol. 193, Springer, New York (2000).
- [2] Dentzer, R.: Polynomials with cyclic Galois group. Comm. Algebra, **23**, 1593–1603 (1995).
- [3] Hashimoto, K., and Miyake, K.: Inverse Galois problem for dihedral groups. Number Theory and Its Applications (eds. Kanemitsu, S., and Gyory, K.). Developments in Math. vol. 2, Kluwer Academic Publ., Dordrecht, pp. 165–181 (1999).
- [4] Saltman, D. J.: Generic Galois extensions and problems in field theory. Adv. Math., 43, 250– 283 (1982).
- [5] Serre, J.-P.: Topics in Galois Theory. Jones and Bartlett Publ., Boston (1992).
- [6] Smith, G. W.: Generic cyclic polynomials of odd degree. Comm. Algebra, 19, 3367–3391 (1991).