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On generic cyclic polynomials of odd prime degree
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Abstract: Using Cohen’s construction of defining polynomials for a cyclic group of odd
prime order, we define a polynomial with some parameters which generates cyclic extensions of a
given odd prime degree, and prove it to be generic in the sense as defined below.
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1. Introduction. Let k be a field and G a
finite group. A polynomial over k with some pa-
rameters is called a generic polynomial for G if it
generates all Galois extensions with Galois group G

over an arbitrary extension of k by specializations of
the parameters. Let Cl be the cyclic group of an odd
prime order l. The aim of this paper is to investi-
gate generic polynomials for Cl over k of character-
istic other than l. The result of Saltman [4] implies
the existence of a polynomial of this kind. The sim-
plest example is given by Kummer theory. In fact,
if k contains an l-th root of unity then X l − T is
a generic polynomial with one parameter T for Cl.
Moreover, in case k = Q, an explicit construction
for a generic polynomial for Cl was essentially given
by Smith [6]. On the other hand, Cohen [1] gave
a method of generating cyclic polynomials of degree
l, by using a simple tool of Kummer theory, which
seems to us more natural and more easily compre-
hensible than Smith’s. In the present paper, largely
following Cohen’s method, we will construct a poly-
nomial over k of degree l with some parameters, and
prove this polynomial to be generic over k for Cl.
Our result can be regarded a natural generalization
of Smith [6] as well as of the above fact on Kummer
theory for the group Cl.

2. Definition of cyclic polynomials.
Throughout this paper, we will fix an odd prime
l. In this section, we summarize the results on the
defining polynomials for cyclic extensions of degree l

described in Cohen [1, Ch. 5].
Let k be a field of characteristic other than l.

Let ζ be a fixed primitive l-th root of unity and put
F = k(ζ). Put V = F×/F×l which will be regarded
as a vector space over Fl = Z/lZ. Let F× → V , α 7→
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ᾱ be the canonical surjection. Any cyclic extension
of degree l over F is given in the form F ( l

√
α) for

some α ∈ F×. By Kummer theory, this induces
a bijection between such cyclic extensions and one-
dimensional subspaces of V . Now the Galois group G

of the extension F/k is isomorphic to a subgroup of
F×l under the isomorphism χ from G into F×l by ζσ =
ζχ(σ) (σ ∈ G). Let d be the order of G, that is, d =
[F : k]. The Galois group G acts on V , and therefore
V is an Fl[G]-module. Define an idempotent ε of the
group algebra Fl[G] by

ε =
1
d

∑
σ∈G

χ(σ−1)σ.

Then the image V ε of the Fl-linear transformation ε

on V is the eigenspace of the generator σ0 of G with
the eigenvalue χ(σ0). Thus we have

ᾱ ∈ V ε ⇐⇒ ᾱσ = ᾱχ(σ) (σ ∈ G)

for α ∈ F×.

The following two propositions and the defini-
tion of cyclic polynomials are all included in Theo-
rem 5.3.5 of [1]; nevertheless, we shall restate a par-
tial result of this theorem as Proposition 2, and give
a proof, because we will use the same discussion later
on.

Proposition 1. If K is a cyclic extension
over k of degree l, and α is an element of F× such
that K(ζ) = F ( l

√
α), then we have ᾱ ∈ V ε. Con-

versely, for α ∈ F× satisfying ᾱ ∈ V ε \ {1}, F ( l
√

α)
is an abelian extension over k of degree dl which con-
tains a unique cyclic extension K over k of degree l.

This implies that there is a bijection between
cyclic extensions over k of degree l and one-
dimensional subspaces of V ε.
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Proposition 2. Let K be a cyclic extension
over k of degree l and take α ∈ F× such that
K(ζ) = F ( l

√
α). Set A = l

√
α and L = K(ζ).

Then K = k
(
TrL/K(A)

)
and all the conjugates of

TrL/K(A) over k are given by TrL/K

(
Aζi

)
(0 ≤ i ≤

l − 1).
Proof. We identify the Galois group of L/K

with G. For each σ ∈ G, take an integer xσ ∈
{1, 2, . . . , l− 1} with χ(σ) = xσ mod l. Since ᾱ ∈ V ε

by Proposition 1, we have (Aσ−xσ )l = ασ−xσ ∈ F×l.
Thus there is γσ ∈ F× such that Aσ = γσAxσ for
σ ∈ G. Then we have

TrL/K(A) =
∑
σ∈G

γσAxσ /∈ k,

because {xσ}σ∈G ⊂ {1, 2, . . . , l−1} and 1, A, A2, . . .,
Al−1 are linearly independent over F . Hence we have
K = k(TrL/K(A)). It is obvious that TrL/K(Aζi)
are the conjugates of TrL/K(A) over k. Moreover, if
0 ≤ i 6= j ≤ l − 1 then

TrL/K(Aζi)− TrL/K(Aζj)

=
∑
σ∈G

γσ(ζixσ − ζjxσ )Axσ 6= 0

which completes the proof.
Under the notations in Proposition 2, we denote

by f(X;α) the minimal polynomial of TrL/K(A) over
k, that is,

f(X;α) =
l−1∏
i=0

(X − TrL/K(Aζi)).

Also when α ∈ F×l, replacing L,K by F, k respec-
tively, we define f(X;α) in the same form; the prod-
uct of linear factors X −TrF/k(Aζi) (0 ≤ i ≤ l− 1).
Obviously, f(X;α) depends only on α and not on
the choice of A.

Let

E =
{
e ∈ Z[G]

∣∣ sε = e mod l for some s ∈ F×l
}
.

For any e ∈ E and β ∈ F×, we can define a polyno-
mial f(X;βe). In case βe /∈ F×l, there is a unique
subfield K of L = F (A) which is cyclic over k of de-
gree l, where Al = βe. Note that the cyclic extension
generated by f(X;βe) is independent of the choice
of e ∈ E .

Now we take a basis (wσ)σ∈G of F/k. Let
T = (Tσ)σ∈G be independent transcendentals over
k indexed by G. The Galois group of F (T )/k(T ) is
canonically isomorphic to G. Then we can apply the

above discussion to define a polynomial over k(T ) by

g(X;T ) = f(X; β̃(T )e),

where

β̃(T ) =
∑
σ∈G

wσTσ ∈ F (T ).

Putting β = β̃(t) for t = (tσ)σ∈G ∈ kd, we get again
f(X;βe) = g(X; t) ∈ k[X]. Therefore all the cyclic
extensions over k of degree l are parameterized by
g(X;T ). Thus we have the following result.

Proposition 3. Any cyclic extension K over
k of degree l may be obtained as the splitting field of
g(X; t) over k for some t ∈ kd.

Remark. Smith [6] and Dentzer [2] discuss the
cyclic polynomials of general odd degrees over Q. If
we restrict the degrees to be prime, say l, then the
polynomials they have constructed are obtained from
our g(X;T ). Consider k to be Q. In this case we
have d = l−1 and G ' F×l . Choose e =

∑
σ∈G eσσ ∈

E with eσ ∈ Z satisfying

χ(σ−1) = eσ mod l and 1 ≤ eσ ≤ l − 1,

and a basis of F/k such as

{wσ}σ∈G = {ζ, ζ2, . . . , ζl−1}.

Then it can be verified that g(X;T ) coincides with
the polynomial that Smith and Dentzer have treated.
Though the degrees are restricted to primes, our con-
struction seems more natural to us.

3. A generic polynomial. We will fix e ∈ E
and a basis (wσ)σ∈G of F/k. We have constructed
with them the polynomial g(X;T ) ∈ k(T )[X] that
parameterizes all the cyclic extension over k of degree
l. Our goal of this section is to prove that g(X;T )
is generic over k, in other words, g(X;T ) has the
following properties:
(A) The Galois group of g(X;T ) over k(T ) is cyclic

of order l.
(B) For any field k1 containing k as a subfield and

any cyclic extension K1 of degree l over k1, there
exists t ∈ kd

1 such that K1 is the splitting field
of g(X; t) over k1.

(For the definition of the term “generic” in a more
general situation, see [3]–[6].)

Theorem. The polynomial g(X;T ) is generic
over k, i.e., g(X;T ) has the properties (A) and (B).

Before proving the theorem, we analyze the
roots of the polynomial g(X;T ) and its specializa-
tion. We review the discussion in the proof of Propo-



No. 10] On generic cyclic polynomials of odd prime degree 161

sition 2 and the definition of f(X;βe). Let Ã be an
element of the algebraic closure of k(T ) satisfying
Ãl = β̃(T )e, and put L̃ = F (T )(Ã). Let K̃ be the
intermediate field of L̃/k(T ) such that [L̃ : K̃] = d.
The Galois group of L̃/K̃ is identified with G. Let
σ ∈ G. Take integers 1 ≤ xσ ≤ l − 1 such that
χ(σ) = xσ mod l. Then there is the rational func-
tion γ̃σ(T ) ∈ F (T ) determined by Ãσ = γ̃σ(T )Ãxσ .
It is not difficult to show that γ̃σ(T ) is independent
of the choice of Ã. Using these notations, we obtain
the roots of g(X;T ) in the form

TrL̃/K̃(Ãζj) =
∑
σ∈G

γ̃σ(T )Ãxσζjσ, 0 ≤ j ≤ l − 1.

We now denote by Bσ(T ) the linear form given by
β̃(T )σ for σ ∈ G:

Bσ(T ) =
∑
τ∈G

wσ
τ Tτ .

Write

e =
∑
σ∈G

eσσ with eσ ∈ Z.

Then we have

Ãl = β̃(T )e =
∏
σ∈G

Bσ(T )eσ .

We need the following two lemmas.
Lemma 1. Any coefficient of g(X;T ) is

given in the form of a finite sum
∑

qiβ̃(T )ui , where
qi are elements of the prime field contained in k and
ui ∈ Z[G].

Proof. See Cohen [1, Proposition 5.3.9].
Lemma 2. Let k1 be a field containing k as a

subfield and t ∈ kd
1 . Assume that Bσ(t) 6= 0 for any

σ ∈ G.
(1) The coefficients of g(X;T ) can be defined at

t, and therefore we obtain a polynomial g(X; t)
over k1.

(2) For each σ ∈ G, the rational function γ̃σ(T ) can
be defined at t, and γ̃σ(t) 6= 0.

(3) Let A1 be an element of the algebraic closure of
k1 satisfying

Al
1 =

∏
σ∈G

Bσ(t)eσ .

Then all the roots of g(X; t) are given by∑
σ∈G

γ̃σ(t)Axσ
1 ζjσ, 0 ≤ j ≤ l − 1.

Proof. (1) From Lemma 1, it suffices to show
that β̃(t)u can be defined for any u ∈ Z[G]. But,

writing u =
∑

σ uσσ (uσ ∈ Z), we confirm that
β̃(T )u =

∏
σ Bσ(T )uσ can be defined at t satisfying

our assumption, also when uσ is negative for some
σ.
(2) Since γ̃σ(T )l = Ãl(σ−xσ) = β̃(T )e(σ−xσ) and
e(σ − xσ) ≡ 0 (mod l), there exist jσ ∈ F×l and
vσ ∈ Z[G] such that γ̃σ(T ) = ζjσ β̃(T )vσ . Therefore,
in the same manner as in (1), we see that γ̃σ(t) can
be defined, and that γ̃σ(t) 6= 0.
(3) By specialization, our assertion follows from the
above argument on the roots of g(X;T ).

We are now ready to prove the main theorem.
Proof of Theorem. Let W be the matrix

(wσ
τ )σ,τ∈G (index the rows by σ, the columns by τ).

We note that W is regular, since F/k is separable.
Thus the d linear forms Bσ(T ) (σ ∈ G) are distinct
from each other. Therefore β̃(T )e =

∏
Bσ(T )eσ /∈

F (T )×l which implies the property (A). Next, let k1

be any field extension of k and K1/k1 any cyclic ex-
tension of degree l. To show the property (B), we
have to find out t = (tσ)σ∈G in kd

1 such that K1 is
the splitting field of g(X; t) over k1. Let F1 = k1(ζ)
and L1 = K1(ζ). The Galois group H of the exten-
sion F1/k1 is regarded as a subgroup of G naturally.
Put

e(H) =
∑
σ∈H

eσσ.

Since L1 is abelian over k1, there is β1 ∈ F×1 such
that L1 = F1(A1) where Al

1 = β
e(H)
1 by Proposition

1. For σ ∈ G, set

bσ =

{
βσ

1 σ ∈ H,

1 σ /∈ H.

With the d-dimensional column vector b =
(bσ)σ∈G ∈ F d

1 and the regular matrix W = (wσ
τ ),

we put

t = W−1b.

We claim that t ∈ kd
1 . To see this, we write t =

(tWW )−1(tWb). It is well-known that the entries of
tWW belong to k. On the other hand, the entries of
tWb belong to k1, because∑

τ∈G

wτ
σbτ =

∑
τ∈H

wτ
σβτ

1 +
∑
τ /∈H

wτ
σ

=
∑
τ∈H

wτ
σ(βτ

1 − 1) +
∑
τ∈G

wτ
σ

= TrF1/k1(wσ(β1 − 1)) + TrF/k(wσ).
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Now the relation W t = b shows

Bσ(t) = bσ 6= 0 (σ ∈ G).

Moreover,

Al
1 = β

e(H)
1 =

∏
σ∈H

βσeσ
1 =

∏
σ∈G

beσ
σ =

∏
σ∈G

Bσ(t)eσ .

Then, by Lemma 2, γ̃σ(t) 6= 0 and all the roots of
g(X; t) are given by

θj =
∑
σ∈G

γ̃σ(t)Axσ
1 ζjσ, 0 ≤ j ≤ l − 1.

Since γ̃σ(t) ∈ F×1 and 1, A1, A
2
1, . . . , A

l−1
1 are linearly

independent over F1, we obtain L1 = F1(θj), which
yields

l = [L1 : F1] = [F1(θj) : F1]

≤ [k1(θj) : k1] ≤ deg g(X; t) = l,

and therefore [k1(θj) : k1] = l. Hence K1 = k1(θj)
for any j. This completes the proof.

Remark. If H = G, then it follows directly
from Proposition 3 that K1 is the splitting field of

g(X; t) over k1 for some t ∈ kd
1 , because (wσ)σ∈G

remains a basis of F1 over k1. So the essential dif-
ficulty of showing this fact in general is in the case
where H is a proper subgroup of G.
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