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Abstract:

In this paper, it is proved that, over certain real quadratic fields, there are no

elliptic curves having everywhere good reduction and cubic discriminant.

Key words:

1. Result. In [2], we showed that there are,
up to isomorphism over Q(v/33), exactly six elliptic
curves with everywhere good reduction over Q(v/33),
two of which have cubic discriminant, and that there
are no such curves over Q(+/3p) if p = 19,23 or 31.
In this paper, we refine some results in [2], and using
them, we prove the following;:

Theorem. If p is a prime number such that
p =3 (mod 4) and p # 3, 11, then there is no elliptic
curve which has everywhere good reduction over k =
Q(v/3p) and whose discriminant is a cube in k.

2. Proof of Theorem. Theorem follows
from the following two propositions:

Proposition 1. Let k be a quadratic field in
which 3 does not split. If there is an elliptic curve
which has everywhere good reduction over k and ad-
mits a 3-isogeny defined over k, and whose discrim-
inant is a cube in k, then k is Q(v/6) or Q(v/33).

Proposition 2. Let p be a prime number such
that p # 3 and p = 3 (mod 4) and let k = Q(v/3p).
Then every elliptic curve with everywhere good reduc-
tion over k whose discriminant is a cube in k admits
a 3-isogeny defined over k.

2.1. Proof of Proposition 1. For a num-
ber field k, we denote by hi, O and O, the class
number, the ring of integers and the group of units
of k, respectively.

Let k be as in Proposition 1. In [2], Proposition
1 is proved under the assumption that (hy,6) = 1,
but without the requirement that 3 does not split in
k. The condition (hy,6) = 1 is used, when 3 does
not split, only in solving the equation

(1) X?=1+4+2w, X €O, veO.
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Hence, to prove Proposition 1, it is enough to prove
the following:

Lemma 1. Let k be a quadratic field. Then
equation (1) has a solution only when k = Q(v/6)
or Q(v/33), in which cases, the only solutions are
(X,v) = (44+ V6,5 +2V6), (—(5+33),—(23 +
44/33)), respectively.  Note that 5 4+ 2v/6 (resp.
23 + 41/33) is the fundamental unit of Q(v/6) (resp.
Q(v33)).

Proof. Taking the norm of (1), we have
23—+ 3y +1
=(@—y+ )@ +y +1+ay+y—2)
= 729Nk/Q(U),
where x = Ny /q(X), y = Try/q(X) € Z. Reducing
modulo 4, we see that Nk/Q(’U) = 1, whence we have
x—y+1=23%,
Py lday+y—ax=3""%
for some a € Z with 0 < a < 6 and e = 1. Elimi-
nating x, we have
3y? + (3°Tte — 3)y + (3%* +3 — 3°Tle — 307%) = 0.

This is possible only whene =1, a =1, and y = 8 or
—10. Thus (Try/q(X), Ni/q(X)) = (8,10), that is
X =4+6, or (Tryq(X), Niyq(X)) = (—10,-8),

that is X = —(5 £ /33). O
2.2. Proof of Proposition 2. The follow-

ing is proved in [2]:

Proposition 3. Let k be a real quadratic
field. Assume that the ray class number of k(v/—3)
modulo (v/—3) is not a multiple of 4. Then every
elliptic curve which has everywhere good reduction
over k and whose discriminant is a cube in k admits
a 3-isogeny defined over k.



142 T. KAGAWA

Thus, to prove Proposition 2, we prove that a
real quadratic field as in Proposition 2 satisfies the
assumption of Proposition 3. (Corollary 1 below.)
Note that, in [2], we checked this assumption using
the computer software KASH when p = 11,19,23 or
31.

Lemma 2. Let p and q be distinct primes
such that p = ¢ = 3 (mod 4) and let k = Q(\/pq).
Let € be the fundamental unit of k greater than 1 and
let q be the prime ideal of k dividing q. Then

(i) hy is odd.

(i) K(v=2) = Qv v=0).

(iii) € = (p/q) (mod q), where (-/-) is the Legendre
symbol. In particular, e = p (mod q) if ¢ = 3.
Proof. (i) This is well-known (see Theorems

39 and 41 of [1] for example).

(ii) By (i), qis principal. Let 7 € O, be a generator

of g. Since € > 1, k is real and k # Q(,/q), we have

q = w2t for some n € Z, whence k(y/—q) =

(iii) We first show that ¢ = +1 (mod q), which is

equivalent to Trk/Q(g)2 =4 (mod q) since Ny /q(e £

1) = 24+ Try (). But this readily follows on writing

¢ as e = (Try q(e) +by/Pq)/2, b € Z.

Let K = k(v/—¢) = Q(v/=p,v/—¢). By Theo-
rem 23 in [1], q splits in K if and only if there exists
an X € Oy such that X? = —¢ (mod q), which is
equivalent to ¢ = —1 (mod q), since Ok /q = Z/qZ
and ¢ = 3 (mod 4). On the other hand, q splits in K
if and only if ¢ splits in Q(v/—p), which is equivalent
to (p/q) = —1. O

Corollary 1. Let p be a prime number such
that p=3 (mod 4) and p # 3. Let k = Q(\/3p) and
K =k(v/=3). Then

(i) hk is odd.

(ii) The ray class number hy(v/—3) of K modulo
(v/=3) is 2hg or hx according asp=1 (mod 3)
or p = 2 (mod 3). In particular, hx(\/—3) is
not a multiple of 4.

Proof. (i) From [1], Corollary 3 to Theorem
74, it follows that hx = hkhQ(\/_—p)hQ(\/_—3) =
hihq(y=5), Which is odd by Lemma 2 (i).

(i) Let G := (Og/V-30K)* and H :=

{z++/-30k | x € 05} C G. From the formula for
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the ray class number (Theorem 1 of Chapter VI in
[3]), it follows that hx(v/—3) = hx (G : H). Thus it
is enough to show that

- 2 ifp=1
(G H) =1y ifp=2

Let (s = (1 + v/—3)/2 be a primitive sixth root of
unity and € > 1 the fundamental unit of k. Since
K = k(v/—¢) by Lemma 2 (ii) and (s € K, we have
Ox = (C6) x (v/—¢) (cf. [1], pp. 194, 195), and hence
H = (/= +V=30k, (s + V=30k). Let q be the
prime ideal of k dividing 3.

Assume that p = 1 (mod 3). Then, since
(—p/3) = =1, O = v/=30k is a prime ideal of
K and hence G is a cyclic group of order 8. Lemma
2 (iii) and the formulas

(2) G6—1=¢, G—-1=v-3G

imply that H = (v/—e + v—30k) = Z/4Z. Thus
(G:H)=2.

Assume that p =2 (mod 3). By Lemma 2 (iii),
we have X2+ ¢ = (X —1)(X + 1) (mod q). Hence
by letting Q; = (qa V—&— 1)7 Qo = (qa V—€+ 1), it
follows from [1], Theorem 23 that

V=30k = q0k = 21Q>,
G = (0 /01)" x (Ok/Q2)"
>~ (Z/3Z)* x (Z/3Z)*.

(mod 3),
(mod 3).

The definition of Q; (¢ = 1,2) implies that
vV—e=1 (mod ;) and /—¢ = —1 (mod Q). Fur-
ther, (2) means that (¢ = —1 (mod Q;) (i = 1, 2).
Thus H = (Z/32)* x(Z/3Z)*, whence (G : H) = 1.
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