On certain real quadratic fields with class number one

By Fitnat Karaali and Hülya İşcan
Trakya University, Department of Mathematics, 22030 Edirne, Turkey
(Communicated by Shokichi Iyanaga, m. J. a., Oct. 12, 2000)

Abstract

In this paper, new five real quadratic fields with norm of fundamental unit +1 and class number one are obtained.

Key words: Class number; real quadratic field; fundamental unit.

Throughout this paper, we denote by \mathbf{N} the set of positive rational integers, and $\mathbf{N}_{0}=\mathbf{N} \cup\{0\}$. Z will mean as usual the set of rational integers. For a square-free $D \in \mathbf{N}$, the real quadratic field $\mathbf{Q}(\sqrt{D})$ will be denoted by k, its class number by h_{k} and its fundamental unit >1 by $\varepsilon_{D}=(t+u \sqrt{D}) / 2$. The norm map from k to \mathbf{Q} will be denoted by N.

The class number one problem requires to determine the set of all D for which $h_{k}=1$ under certain conditions. Let p be prime congruent to $1 \bmod 4$ and $\varepsilon_{p}=\left(u_{p}+t_{p} \sqrt{p}\right) / 2>1$ be the fundamental unit of the real quadratic field $\mathbf{Q}(\sqrt{p})$. In [6] Yokoi showed that there exist exactly 30 real quadratic fields $\mathbf{Q}(\sqrt{p})$ of class number one satisfying $\varepsilon_{p}<2 p$ with one more possible exception of prime discriminant p. In [2] Katayama-Katayama showed that there exist at most 44 real quadratic fields $\mathbf{Q}(\sqrt{p})$ with class number one for $1 \leq u_{p} \leq 300$. In [4] Mollin-Williams solved (except possibly one value) class number one problem for the more general extended Richaud-Degert (i.e. with $D=m^{2}+r$ where $4 m \equiv 0(\bmod r))$ and in [5] they gave a complete generalized form of Yokoi's p-invariants for arbitrary real quadratic field $\mathbf{Q}(\sqrt{D})$ and all $\mathbf{Q}(\sqrt{D})$ having class number one with $n_{D} \neq 0\left(n_{D}\right.$ is defined in [5]).

In this paper, using the same way as in [1], we shall show that there are new five real quadratic fields with class number one for the case $N \varepsilon_{D}=1$, $1 \leq u \leq 100$.

The letters $\mathbf{N}, \mathbf{N}_{0}, D, \varepsilon_{D}, t, u$ will always keep the meanings explained above and $n \in \mathbf{N}_{0}$.

Theorem. With the above notations, there exist new five real quadratic fields $\mathbf{Q}(\sqrt{D})$ with class number one for $1 \leq u \leq 100$, where D are those in Table with one possible exception.

[^0]Proof. Using a similar way as in Prop. 1 in [1], one can find a real number $v(u)$ such that $h_{k}>1$ for $n \geq v(u)$. In fact, we may take $v(u) \geq \sqrt{4+u^{2} e^{c(u)}} / u^{2}$. Moreover, we can choose $c(u)<14.7$ for $1 \leq u \leq 100$. By the help of computer we obtain $v(u)=1557 / u$.

Let q be an odd prime with $(D / q)=1$. If $h_{k}=$ 1 , then we can obtain $q \geq n$ in a similar way as in the proof of Prop. 2 in [1].

In the case $h_{k}=1$, it is also known that if q_{1}, q_{2} of distinct prime factors of D such that $q_{2} \equiv 3$ $(\bmod 4)$ then D satisfies one of the following conditions:
i) $D=q_{1}$,
ii) $D=q_{1} q_{2}$,
iii) $D=2 q_{2}$.

By the help of a computer and using Kida's UBASIC 86, we can list up the Table of the five D satisfying the above necessary conditions with $h_{k}=1$.

Table

u	D
40	57
77	893
78	19
84	22
85	1397

Remark. The real quadratic fields with class number one which are defined by Mollin and Williams in [5] can be obtained with the above theorem too.

References

[1] Karaali, F., and İşcan, H.: Class number two problem for real quadratic fields with fundamental units with the positive norm. Proc. Japan Acad., 74A, 139-141 (1998).
[2] Katayama, S. I., and Katayama, S.-G.: A note on
the problem of Yokoi. Proc. Japan Acad., 67A, 26-28 (1991).
[3] Kida, Y.: UBASIC 86. Nihonhyoronsha, Tokyo (1988).
[4] Mollin, R. A., and Williams, H. C.: Solution of the class number one problem for real quadratic fields of extended Richaud-Degert type (with one possible exception). Number Theory (ed. Mollin, R. A.). Walter de Gruyter, Berlin-New York, pp. 417-425 (1990).
[5] Mollin, R. A., and Williams, H. C.: A complete generalization of Yokoi's p-invariants. Colloq. Math., 63, fasc. 2, 285-294 (1992).
[6] Yokoi, H.: The fundamental unit and class number one problem of real quadratic fields with prime discriminant. Nagoya Math. J., 120, 5159 (1990).

[^0]: 1991 Mathematics Subject Classification. 11R29, 11R27, 11R11.

