An analogue of Yi's theorem to holomorphic mappings

By Manabu Shirosaki and Masatsugu Ueda
Department of Mathematical Sciences, College of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Sakai, Osaka 599-8531
(Communicated by Shigefumi Mori, M. J. A., Jan. 12, 2000)

Abstract

This paper gives pairs of explicit hypersurfaces (S_{1}, S_{2}) of each complex projective space \boldsymbol{P} for which holds an analogue of Yi's uniqueness theorem $[\mathrm{Y}]$: two linearly nondegenerate holomorphic mappings $f, g: C \rightarrow \boldsymbol{P}$ are equal if $f^{-1}\left(S_{j}\right)=g^{-1}\left(S_{j}\right)(j=1,2)$ as divisors.

Key words: Uniqueness theorem; Nevanlinna theory.

1. Introduction. In [Y], Yi gave some answers for Gross' problem of uniqueness of entire functions with the same inverse images of two finite sets counting multiplicities. Also, he gave its analogue to meromorphic functions with the same inverse images of two finite sets and pole counting multiplicities. It is not difficult to raise a problem whether there exist two hypersurfaces in the complex projective space such that two holomorphic mappings of \boldsymbol{C} into the complex projective space which have the same inverse images of two given hypersurfaces as divisors are identical.

In this paper, we give such hypersurfaces, what we call, of Fermat type.
2. Previous results. Let S be a set of $\overline{\boldsymbol{C}}:=$ $\boldsymbol{C} \cup\{\infty\}$. We say that two nonconstant meromorphic functions f and g share $S \mathrm{CM}$ (counting multiplicities), if $f^{-1}(S)=g^{-1}(S)$ and the multiplicities of zero of $f-f\left(z_{0}\right)$ and $g-g\left(z_{0}\right)$ at z_{0} are equal for each $z_{0} \in f^{-1}(S)$.

Let $w=\exp 2 \pi i / n$ and $u=\exp 2 \pi i / m$ for positive integers n and m. Yi gave the following theorem as an answer for Gross' problem in [Y]:

Theorem A. Let $S_{1}=\left\{a_{1}+b_{1}, a_{1}+b_{1} w\right.$, $\left.\ldots, a_{1}+b_{1} w^{n-1}\right\}, S_{2}=\left\{a_{2}+b_{2}, a_{2}+b_{2} u, \ldots, a_{2}+\right.$ $\left.b_{2} u^{m-1}\right\}$, where $n>4, m>4, a_{1}, b_{1}, a_{2}$ and b_{2} are constants such that $b_{1} b_{2} \neq 0$ and $a_{1} \neq a_{2}$. Suppose that f and g are nonconstant entire functions sharing S_{1} and $S_{2} C M$. Then $f=g$.
Also, he gave its analogue to meromorphic functions:

Theorem B. Let $S_{1}=\left\{a_{1}+b_{1}, a_{1}+b_{1} w\right.$, $\left.\ldots, a_{1}+b_{1} w^{n-1}\right\}, S_{2}=\left\{a_{2}+b_{2}, a_{2}+b_{2} u, \ldots, a_{2}+\right.$
$\left.b_{2} u^{m-1}\right\}$, where $n>6, m>6, a_{1}, b_{1}, a_{2}$ and b_{2} are constants such that $b_{1} b_{2} \neq 0$ and $a_{1} \neq a_{2}$. Suppose that f and g are nonconstant meromorphic functions sharing S_{1}, S_{2} and $\{\infty\} C M$. Then $f=g$.

The aim of this paper is to give an analogue of Theorem A to holomorphic mappings of \boldsymbol{C} into $\boldsymbol{P}^{n}(\boldsymbol{C})$ without third set. Note that the points of S_{1} are zero points of $\left(z-a_{1}\right)^{n}-b_{1}{ }^{n}$. Let $z=z_{1} / z_{0}$, then S_{1} is the zero set of $\left(z_{1}-a_{1} z_{0}\right)^{n}-\left(b_{1} z_{0}\right)^{n}$ of $\boldsymbol{P}^{1}(\boldsymbol{C})$, which is a Fermat hypersurface.

In the last of this section we give a useful theorem by Green and Fujimoto and some definitions. We mean by a nonzero entire function an entire function with a point whose value is not zero. For two nonzero entire functions f and g, we say that they are equivalent if the ratio f / g is constant. This introduces an equivalence relation in each set of nonzero entire functions. The following theorem was given in [G] and [F]:

Theorem C. Let f_{0}, \ldots, f_{n} be nonzero entire functions such that $f_{0}{ }^{d}+\cdots+f_{n}{ }^{d}=0$, where d is a positive integer. If $d \geq n^{2}$, then

$$
\sum_{f_{j} \in I} f_{j}^{d}=0
$$

for each equivalence class I. Especially each class has at least two elements.

Definition 1. Let f be a holomorphic mapping of \boldsymbol{C} into $\boldsymbol{P}^{n}(\boldsymbol{C})$. A representation $\tilde{f}=$ $\left(f_{0}, \ldots, f_{n}\right)$ of f is a holomorphic mapping of \boldsymbol{C} into \boldsymbol{C}^{n+1} such that $\tilde{f}^{-1}(\mathbf{0}) \neq \boldsymbol{C}$ and $f(z)=\left(f_{0}(z): \cdots\right.$: $\left.f_{n}(z)\right)$ for each $z \in C \backslash \tilde{f}^{-1}(\mathbf{0})$. A representation \tilde{f} is called to be reduced if $\tilde{f}^{-1}(\mathbf{0})=\emptyset$.

[^0]Definition 2. A holomorphic mapping f of \boldsymbol{C} into $\boldsymbol{P}^{n}(\boldsymbol{C})$ is linearly non-degenerate if its image is not contained in any hyperplane of $\boldsymbol{P}^{n}(\boldsymbol{C})$. This is equivalent to that f_{0}, \ldots, f_{n} are linearly independent over \boldsymbol{C}, where $\left(f_{0}, \ldots, f_{n}\right)$ is a representation of f.
3. Uniqueness of holomorphic mappings. Fix a homogeneous coordinate system (w_{0} : ... : w_{n}) of $\boldsymbol{P}^{n}(\boldsymbol{C})$ and consider the Fermat hypersurface S_{1} defined by $P_{1}\left(w_{0}, \ldots, w_{n}\right):=w_{0}{ }^{p_{1}}+\cdots+$ $w_{n}{ }^{p_{1}}=0$, where p_{1} is a positive integer. Let $A=\left(a_{j k}\right)_{0 \leq j, k \leq n} \in G L(n+1, C)$ and consider another Fermat hypersurface S_{2} defined by

$$
P_{2}\left(w_{0}, \ldots, w_{n}\right):=\sum_{j=0}^{n}\left(\sum_{k=0}^{n} a_{j k} w_{k}\right)^{p_{2}}=0
$$

where p_{2} is a positive integer.
Then S_{1} and S_{2} give our analogue of Theorem A:

Theorem. Let f and g be linearly nondegenerate holomorphic mappings of \boldsymbol{C} into $\boldsymbol{P}^{n}(\boldsymbol{C})$ with reduced representations $\tilde{f}=\left(f_{0}, \ldots, f_{n}\right)$ and $\tilde{g}=\left(g_{0}, \ldots, g_{n}\right)$, respectively. Assume that $p_{1}, p_{2} \geq$ $(2 n+1)^{2}$ and that
(*) $\quad\left(a_{j k}\right)^{2 p(n+1)} \neq\left(a_{\mu \nu}\right)^{2 p(n+1)}$ for any

$$
(j, k) \text { and }(\mu, \nu) \text { such that }(j, k) \neq(\mu, \nu)
$$

where p is the least common multiple of p_{1} and p_{2}. If
(1) $\quad P_{1}\left(f_{0}, \ldots, f_{n}\right)=\alpha^{p_{1}} P_{1}\left(g_{0}, \ldots, g_{n}\right)$
and
(2) $\quad P_{2}\left(f_{0}, \ldots, f_{n}\right)=\beta^{p_{2}} P_{2}\left(g_{0}, \ldots, g_{n}\right)$
hold for some entire functions α and β without zeros, i.e., $f^{*}\left(S_{j}\right)=g^{*}\left(S_{j}\right)(j=1,2)$ as divisors, then $f=g$.

Proof. At the beginning of proof, we note that none of $f_{j}, g_{j}, \sum_{k=0}^{n} a_{j k} f_{k}, \sum_{k=0}^{n} a_{j k} g_{k}$ is identically equal to zero by linear non-degeneracy of f and g. We apply Theorem C to (1) considering linear nondegeneracy of f and g. Then there exist a permutation σ_{j} of $0, \ldots, n$ and p_{1}-th roots ω_{j} of 1 such that

$$
\begin{equation*}
f_{j}=\omega_{j} \alpha g_{\sigma_{j}} \quad(0 \leq j \leq n) \tag{3}
\end{equation*}
$$

Similarly, from (2) we have a permutation τ_{j} of $0, \ldots, n$ and p_{2}-th roots η_{j} of 1 such that
(4) $\sum_{k=0}^{n} a_{j k} f_{k}=\eta_{j} \beta \sum_{k=0}^{n} a_{\sigma_{j} k} g_{k} \quad(0 \leq j \leq n)$.

We represent (3) and (4) by matrices:

$$
\begin{align*}
& { }^{t} \tilde{f}=\alpha \Omega R^{t} \tilde{g} \tag{5}\\
& A^{t} \tilde{f}=\beta H T A^{t} \tilde{g} \tag{6}
\end{align*}
$$

where

$$
\Omega=\left(\begin{array}{ccc}
\omega_{0} & & 0 \\
& \ddots & \\
0 & & \omega_{n}
\end{array}\right), H=\left(\begin{array}{ccc}
\eta_{0} & & 0 \\
& \ddots & \\
0 & & \eta_{n}
\end{array}\right)
$$

and $R=\left(\delta_{\sigma_{j} k}\right)_{0 \leq j, k \leq n}, T=\left(\delta_{\tau_{j} k}\right)_{0 \leq j, k \leq n}$, where $\delta_{j k}$ is Kronecker's delta. Now, by deleting $t \tilde{f}$ from (5) and (6) we get

$$
\begin{equation*}
(\alpha A \Omega R-\beta H T A)^{t} \tilde{g}={ }^{t}(0, \ldots, 0) \tag{7}
\end{equation*}
$$

Since $\operatorname{det}(\alpha A \Omega R-\beta H T A) \equiv 0$ trivially, $\operatorname{det}\{(\alpha / \beta) E$ $\left.-(A \Omega R)^{-1}(H T A)\right\} \equiv 0$, where E is the identity matrix of size $n+1$. This means that the function α / β takes value in the set of the eigenvalues of $(A \Omega R)^{-1}(H T A)$, and hence, $\alpha / \beta=c$, where c is a nonzero constant. By substituting $\alpha=c \beta$ into (7), we have

$$
\beta(c A \Omega R-H T A)^{t} \tilde{g}={ }^{t}(0, \ldots, 0)
$$

Again, linear non-degeneracy of g induces

$$
\begin{equation*}
c A \Omega R=H T A \tag{8}
\end{equation*}
$$

By taking determinants of both sides, $c^{n+1} \omega_{0} \cdots \omega_{n}$ $\times \operatorname{det} R=\eta_{0} \cdots \eta_{n} \operatorname{det} T$ is obtained, and hence $c^{2 p(n+1)}=1$. From (8), $c H^{-1} A \Omega=T A R^{-1}=T A^{t} R$ and by comparing each coefficients $c a_{j k} \omega_{k} / \eta_{j}=$ $a_{\sigma_{j} \tau_{k}}$. It follows from the condition ($\left.*\right)$ that $\sigma_{j}=j$, $\tau_{k}=k$. As $R=T=E$, we get $c \omega_{0}=\cdots=c \omega_{n}=$ $\eta_{0} \cdots=\eta_{n}$ from (8). It implies $f=g$ by (5) or (6).

Now, we apply this theorem to the uniqueness of linearly non-degenerate holomophic mappings by one hypersurface as in [S1] and [S2]. Let $P\left(w_{0}, w_{1}\right)$ be a homogeneous polynomial of degree d with the following property:
let f and g be nonconstant holomorphic mappings of \boldsymbol{C} into $\boldsymbol{P}^{1}(\boldsymbol{C})$ with reduced representations $\tilde{f}=\left(f_{0}, f_{1}\right)$ and $\tilde{g}=\left(g_{0}, g_{1}\right)$, respectively. If $P\left(f_{0}, f_{1}\right)=\alpha^{d} P\left(g_{0}, g_{1}\right)$ holds for an entire function α without zeros, then $f_{j}=\omega \alpha g_{j} \quad(j=0,1)$, where $\omega^{d}=1$.
The existence of such polynomial is shown in [S1], where the least degree is 13 .

From Theorem A we can prove easily
Corollary. In the above situation, assume that $p_{1}=p_{2} \geq(2 n+1)^{2}$ and that the condition $(*)$ in Theorem is satisfied. Let S be a hypersurface in $\boldsymbol{P}^{n}(\boldsymbol{C})$ defined by

$$
P\left(P_{1}\left(w_{0}, \ldots, w_{n}\right), P_{2}\left(w_{0}, \ldots, w_{n}\right)\right)=0 .
$$

Then two linearly non-degenerate holomorphic mappings f and g of \boldsymbol{C} into $\boldsymbol{P}^{n}(\boldsymbol{C})$ satisfying $f^{*}(S)=$ $g^{*}(S)$ as divisors are identical.

In [S2], the author gave another hypersurface of degree $d(2 n-1)^{2}$ which is smaller than $d(2 n+1)^{2}$ of the least degree of hypersurfaces in Corollary.

References

[F] Fujimoto, H.: On meromorphic maps into the complex projective space. J. Math. Soc. Japan, 26, 272-288 (1974).
[G] Green, M. L.: Some Picard theorems for holomorphic maps to algebraic varieties. Amer. J. Math., 97, 43-75 (1975).
[S1] Shirosaki, M.: On polynomials which determine holomorphic mappings. J. Math. Soc. Japan, 49, 289-298 (1997).
[S2] Shirosaki, M.: A hypersurface which determines linearly non-degenerate holomorphic mappings (to appear in Kodai Math. J.).
[Y] Yi, H.-X.: Unicity theorems for entire functions. Kodai Math. J., 17, 133-141 (1994).

[^0]: 1991 Mathematics Subject Classification. Primary 32H30.

