On the generalized Nörlund summability of a sequence of Fourier coefficients

By Yasuo Okuyama*) and Ikuko Miyamoto**)
(Communicated by Shokichi Iyanaga, m. J. A., May 12, 1999)

1. Introduction. Let $f(t)$ be a periodic function with period 2π on $(-\infty, \infty)$ and Lebesgue integrable over $(-\pi, \pi)$. Then the conjugate series of the Fourier series

$$
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)
$$

of f is

$$
\sum_{n=1}^{\infty}\left(b_{n} \cos n t-a_{n} \sin n t\right) \equiv \sum_{n=1}^{\infty} B_{n}(t)
$$

Since Fejer [3] found the relations between the "jump" of $f(t)$ at $t=x$ and the sequence $\left\{n B_{n}(x)\right\}$, there are many results which show how the behaviour of $f(t)$ in the neighborhood of $t=x$ controls the convergence of the sequence $\left\{n B_{n}(x)\right\}$ to the jump in the sense of summability. To state the most recent result of Khare and Tripathi [5], we need the following definitions.

Given two sequences $p=\left\{p_{n}\right\}$ and $q=\left\{q_{n}\right\}$, the convolution $(p * q)$ is defined by

$$
(p * q)_{n}=\sum_{k=0}^{n} p_{n-k} q_{k}=\sum_{k=0}^{n} p_{k} q_{n-k}
$$

Let $\left\{s_{n}\right\}$ be a sequence. When $(p * q)_{n} \neq 0$ for all n, the generalized Nörlund transform of the sequence $\left\{s_{n}\right\}$ is the sequence $\left\{t_{n}^{p, q}\right\}$ obtained by putting

$$
t_{n}^{p, q}=\frac{1}{(p * q)_{n}} \sum_{k=0}^{n} p_{n-k} q_{k} s_{k}
$$

If $\lim _{n \rightarrow \infty} t_{n}^{p, q}$ exists and is equal to s, then the sequence $\left\{s_{n}\right\}$ is said to be summable $\left(N, p_{n}, q_{n}\right)$ to the value s.

If $s_{n} \rightarrow s(n \rightarrow \infty)$ induces $t_{n}^{p, q} \rightarrow s(n \rightarrow \infty)$, then the method $\left(N, p_{n}, q_{n}\right)$ is called to be regular. The necessary and sufficient condition for (N, p_{n}, q_{n})
*) Department of Mathematics, Faculty of Engineering, Shinshu University, 500 Wakasato, Nagano 380-8553.
**) Department of Mathematics and Informatics, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522.
method to be regular is $\sum_{k=0}^{n}\left|p_{n-k} q_{k}\right|=O\left(\left|(p * q)_{n}\right|\right)$ and $p_{n-k}=o\left(\left|(p * q)_{n}\right|\right)$ as $n \rightarrow \infty$ for every fixed $k \geq 0$ (see Borwein [2]).

The method $\left(N, p_{n}, q_{n}\right)$ reduces to the Nörlund $\operatorname{method}\left(N, p_{n}\right)$ if $q_{n}=1$ for all n and to the Riesz $\operatorname{method}\left(\bar{N}, q_{n}\right)$ if $p_{n}=1$ for all n. We know that $\left(N, p_{n}\right)$ mean or $\left(\bar{N}, q_{n}\right)$ mean includes as a special case Cesàro and harmonic means or logarithmic mean, respectively.

The method $\left(N, p_{n}, q_{n}\right)(C, 1)$ is obtained by superimposing the method $\left(N, p_{n}, q_{n}\right)$ on the Cesàro mean ($\mathrm{C}, 1$) of order one (see Astrachan [1]).

Throughout this paper, we shall use the following notations:

$$
\begin{aligned}
& \psi_{x}(t)=\{f(x+t)+f(x-t)-l\} \\
& \Psi_{x}(t)=\int_{0}^{t}\left|\psi_{x}(u)\right| d u
\end{aligned}
$$

for any fixed $x(-\infty<x<\infty)$ and a constant l depending on x. For two sequence $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$, we define $P(t)(0 \leq t<\infty)$ and $R_{n}(n=0,1,2, \ldots)$ by

$$
P(t)=\sum_{k=0}^{[t]} p_{k} \quad \text { and } \quad R_{n}=(p * q)_{n}=\sum_{k=0}^{n} p_{n-k} q_{k},
$$

where $[t]$ denotes the integral part of t.
Theorem KT (Khare and Tripathi [5]). Let $\left(N, p_{n}, q_{n}\right)$ be regular Nörlund method defined by a non-negative, non-increasing sequence $\left\{p_{n}\right\}$ and a non-negative, non-decreasing sequence $\left\{q_{n}\right\}$. If the condition

$$
\begin{equation*}
\int_{\pi / n}^{\delta} \frac{\left|\psi_{x}(t)\right|}{t} P\left(\frac{\pi}{t}\right) d t=o\left(R_{n} q_{n}^{-1}\right) \quad(n \rightarrow \infty) \tag{1.1}
\end{equation*}
$$

holds for a number $\delta, 0<\delta<\pi$, then the sequence $\left\{n B_{n}(x)\right\}$ is summable $\left(N, p_{n}, q_{n}\right)(C, 1)$ to l / π.

In this paper, by generalizing a result of Hirokawa and Kayashima [4], we shall give a theorem which contains Theorem KT.
2. Statement of our result. We define another function $R_{n}(t)(0 \leq t<n+1)$ with a nonnegative integer n by

$$
R_{n}(t)=\int_{0}^{t} r_{n}(u) d u
$$

where $r_{n}(u)=p_{k} q_{n-k}$ for $k \leq u<k+1 \quad(k=$ $0,1,2, \ldots, n)$.

Theorem. Let $\left(N, p_{n}, q_{n}\right)$ be a regular Nörlund method defined by a non-negative, non-increasing sequence $\left\{p_{n}\right\}$ and a non-negative, non-decreasing sequence $\left\{q_{n}\right\}$.

If the condition

$$
\begin{equation*}
\int_{\pi / n}^{\delta} \Psi_{x}(t)\left|\frac{d}{d t} \frac{R_{n}(\pi / t)}{t}\right| d t=o\left(R_{n}\right) \text { as } n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

holds for a number $\delta, 0<\delta<\pi$, then the sequence $\left\{n B_{n}(x)\right\}$ is summable $\left(N, p_{n}, q_{n}\right)(C, 1)$ to l / π.

Now we shall show that Theorem contains Theorem KT. First of all, we remark

$$
\frac{d}{d t} \frac{R_{n}(\pi / t)}{t}<0
$$

for any $t, 0<\pi / t<n+1$, because

$$
\begin{equation*}
\frac{d}{d t} \frac{R_{n}(\pi / t)}{t}=\frac{(-\pi / t) r_{n}(\pi / t)-R_{n}(\pi / t)}{t^{2}} \tag{2.2}
\end{equation*}
$$

Since the condition (1.1) implies $\Psi_{x}(t)=o(t)(t \rightarrow$ 0), we have

$$
\begin{aligned}
& \int_{\pi / n}^{\delta} \Psi_{x}(t)\left|\frac{d}{d t} \frac{R_{n}(\pi / t)}{t}\right| d t \\
& =\left[-\Psi_{x}(t) \frac{R_{n}(\pi / t)}{t}\right]_{\pi / n}^{\delta}+\int_{\pi / n}^{\delta} \frac{\left|\psi_{x}(t)\right|}{t} R_{n}\left(\frac{\pi}{t}\right) d t \\
& =o\left(R_{n}(n)-R_{n}\left(\frac{\pi}{\delta}\right)\right) \\
& \quad+o\left(q_{n} \int_{\pi / n}^{\delta} \frac{\left|\psi_{x}(t)\right|}{t} P\left(\frac{\pi}{t}\right) d t\right)=o\left(R_{n}\right)
\end{aligned}
$$

by virtue of the fact that $R_{n}(\pi / t) \leq q_{n} P(\pi / t)$. Hence the conditions (1.1) is implied in the condition (2.1).

From Theorem we immediately obtain the following corollary with another conditions (2.3) and (2.4) which are considered by Singh [9] with respect to convergence of conjugate series.

Corollary. Let $\left(N, p_{n}, q_{n}\right)$ be a regular Nörlund method defined by a non-negative, nonincreasing sequence $\left\{p_{n}\right\}$ and a non-negative,
non-decreasing sequence $\left\{q_{n}\right\}$ such that

$$
\begin{equation*}
q_{n} \int_{1}^{n} \frac{\lambda(u)}{u} d u=O\left(R_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{2.3}
\end{equation*}
$$

where $\lambda(u)$ is a positive function of u. If the condition

$$
\begin{equation*}
\int_{0}^{t}\left|\psi_{x}(u)\right| d u=o\left(\frac{t \lambda(\pi / t)}{P(\pi / t)}\right) \quad \text { as } \quad t \rightarrow 0 \tag{2.4}
\end{equation*}
$$

holds, then the sequence $\left\{n B_{n}(x)\right\}$ is summable $\left(N, p_{n}, q_{n}\right)(C, 1)$ to l / π.

Proof. Since the sequence $\left\{p_{k} q_{n-k}\right\}_{k=0}^{n}$ is a non-increasing sequence of k, we have

$$
0 \leq \frac{\pi}{t} r_{n}\left(\frac{\pi}{t}\right) \leq R_{n}\left(\frac{\pi}{t}\right) \quad\left(0<\frac{\pi}{t}<n+1\right)
$$

Hence we obtain

$$
\frac{d}{d t} \frac{R_{n}(\pi / t)}{t}=O\left(\frac{R_{n}(\pi / t)}{t^{2}}\right)
$$

from (2.2). If the conditions (2.3) and (2.4) hold, then we have

$$
\begin{aligned}
& \int_{\pi / n}^{\delta} \Psi_{x}(t)\left|\frac{d}{d t} \frac{R_{n}(\pi / t)}{t}\right| d t \\
& =o\left(\int_{\pi / n}^{\delta} \frac{t \lambda(\pi / t)}{P(\pi / t)} \cdot \frac{R_{n}(\pi / t)}{t^{2}} d t\right) \\
& =o\left(\int_{\pi / n}^{\delta} \frac{\lambda(\pi / t) R_{n}(\pi / t)}{t P(\pi / t)} d t\right) \\
& =o\left(\int_{\pi / \delta}^{n} \frac{\lambda(y) R_{n}(y)}{y P(y)} d y\right) \\
& =o\left(\sum_{k=2}^{n} \int_{k-1}^{k} \frac{\lambda(y) R_{n}(y)}{y P(y)} d y\right) \\
& =o\left(\sum_{k=2}^{n} \frac{R_{n}(k)}{P(k-1)} \int_{k-1}^{k} \frac{\lambda(y)}{y} d y\right) \\
& =o\left(q_{n} \sum_{k=2}^{n} \frac{P_{k-1}}{P(k-1)} \int_{k-1}^{k} \frac{\lambda(y)}{y} d y\right) \\
& =o\left(q_{n} \int_{1}^{n} \frac{\lambda(y)}{y} d y\right)=o\left(R_{n}\right),
\end{aligned}
$$

which is the condition (2.1).
3. Proof of Theorem. We need the following lemma for the proof of Theorem.

Lemma. Let $\left\{p_{n}\right\}$ be a non-negative, nonincreasing sequence and $\left\{q_{n}\right\}$ be a non-negative, nondecreasing sequence. If we put

$$
K_{n}(t)=\frac{1}{R_{n}} \sum_{k=1}^{n} p_{n-k} q_{k}\left\{\frac{\sin k t}{k t^{2}}-\frac{\cos k t}{t}\right\}
$$

then we have

$$
\begin{equation*}
K_{n}(t)=O(n) \quad\left(0<t \leq \frac{\pi}{n}\right) \tag{3.1}
\end{equation*}
$$

and
(3.2) $K_{n}(t)=O\left(\frac{R_{n}(\pi / t)}{t R_{n}}\right) \quad\left(\frac{\pi}{n}<t \leq \pi\right)$.

Proof. If $0<t \leq \pi / n$, then we have

$$
\begin{aligned}
K_{n}(t) & =O\left(\frac{1}{R_{n}} \sum_{k=1}^{n} p_{n-k} q_{k}\left(k^{2} t\right)\right) \\
& =O\left(\frac{n}{R_{n}} \sum_{k=1}^{n} p_{n-k} q_{k}\right)=O(n)
\end{aligned}
$$

which is (3.1).
To prove (3.2), we first put

$$
\begin{aligned}
& I_{1}=\frac{1}{R_{n}} \sum_{k=1}^{n} p_{n-k} q_{k} \frac{\sin k t}{k t^{2}}, \\
& I_{2}=\frac{1}{R_{n}} \sum_{k=1}^{n} p_{n-k} q_{k} \frac{\cos k t}{t} .
\end{aligned}
$$

Then

$$
\begin{equation*}
\left|K_{n}(t)\right| \leq\left|I_{1}\right|+\left|I_{2}\right| . \tag{3.3}
\end{equation*}
$$

By virtue of the fact that

$$
\sum_{k=1}^{n} p_{n-k} q_{k} \cos k t=O\left(R_{n}\left(\frac{\pi}{t}\right)\right)\left(\frac{\pi}{n}<t \leq \pi\right)
$$

(see [6]), we immediately obtain

$$
\begin{equation*}
\left|I_{2}\right|=O\left(\frac{R_{n}(\pi / t)}{t R_{n}}\right) \tag{3.4}
\end{equation*}
$$

for any $t(\pi / n<t \leq \pi)$. Next, by dividing I_{1} into two parts I_{11} and I_{12} :

$$
\begin{aligned}
& I_{11}=\frac{1}{t R_{n}} \sum_{k=0}^{\tau-1} p_{k} q_{n-k} \frac{\sin (n-k) t}{(n-k) t} \\
& I_{12}=\frac{1}{t R_{n}} \sum_{k=\tau}^{n-1} p_{k} q_{n-k} \frac{\sin (n-k) t}{(n-k) t}
\end{aligned}
$$

where $\tau=[\pi / t]$, we have

$$
\begin{equation*}
\left|I_{1}\right| \leq\left|I_{11}\right|+\left|I_{12}\right| \tag{3.5}
\end{equation*}
$$

If $\pi / n<t \leq \pi$, then

$$
\begin{equation*}
I_{11}=O\left(\frac{R_{n}(\pi / t)}{t R_{n}}\right) \tag{3.6}
\end{equation*}
$$

By Abel's transformation, we have

$$
I_{12}=O\left(\frac { 1 } { t ^ { 2 } R _ { n } } \left\{\sum_{k=\tau}^{n-2}\left(p_{k} q_{n-k}-p_{k+1} q_{n-k-1}\right)\right.\right.
$$

$$
\begin{gathered}
\left.\left.+p_{n-1} q_{1}+p_{\tau} q_{n-\tau}\right\}\right) \\
=O\left(\frac{p_{\tau} q_{n-\tau}}{t^{2} R_{n}}\right)=O\left(\frac{R_{n}(\pi / t)}{t R_{n}}\right)
\end{gathered}
$$

because

$$
\left|\sum_{k=1}^{n} \sin \frac{k t}{k}\right| \leq \frac{\pi}{2}+1
$$

for any positive integer n (see [10]). Thus (3.2) evidently follows from (3.3)-(3.7).

Proof of Theorem. From the method of Mohanty and Nanda [7], we have

$$
\begin{aligned}
& \frac{1}{n} \sum_{k=1}^{n} k B_{k}(x)-\frac{l}{\pi} \\
& =\frac{1}{\pi} \int_{0}^{\delta} \psi_{x}(t)\left\{\frac{\sin n t}{n t^{2}}-\frac{\cos n t}{t}\right\} d t+o(1)
\end{aligned}
$$

by Riemann-Lebesgue's theorem. Since the method $\left(N, p_{n}, q_{n}\right)$ is regular, in order to prove Theorem, it is sufficient to show that

$$
\begin{aligned}
& \frac{1}{R_{n}} \sum_{k=1}^{n} p_{n-k} q_{k} \frac{1}{\pi} \int_{0}^{\delta} \psi_{x}(t)\left\{\frac{\sin k t}{k t^{2}}-\frac{\cos k t}{t}\right\} d t \\
& =\frac{1}{\pi} \int_{0}^{\delta} \psi_{x}(t) K_{n}(t) d t=o(1)
\end{aligned}
$$

Now we write

$$
\begin{aligned}
\frac{1}{\pi} \int_{0}^{\delta} \psi_{x}(t) K_{n}(t) d t & =\frac{1}{\pi}\left(\int_{0}^{\pi / n}+\int_{\pi / n}^{\delta}\right) \psi_{x}(t) K_{n}(t) d t \\
& =I_{3}+I_{4}
\end{aligned}
$$

say. If the condition (2.1) is satisfied, we obtain

$$
\Psi_{x}(t)=o(t) \quad(t \rightarrow 0)
$$

from (3.1) (see [8]). Hence we have

$$
I_{3}=O(n)\left(\int_{0}^{\pi / n}\left|\psi_{x}(t)\right| d t\right)=o(1)
$$

Next, we obtain by (3.2)

$$
\begin{aligned}
I_{4}= & O\left(\frac{1}{R_{n}} \int_{\pi / n}^{\delta}\left|\psi_{x}(t)\right| \frac{R_{n}(\pi / t)}{t} d t\right) \\
= & O\left(\frac{1}{R_{n}}\left[\Psi_{x}(t) \frac{R_{n}(\pi / t)}{t}\right]_{\pi / n}^{\delta}\right) \\
& +O\left(\frac{1}{R_{n}} \int_{\pi / n}^{\delta} \Psi_{x}(t)\left|\frac{d}{d t} \frac{R_{n}(\pi / t)}{t}\right| d t\right) \\
= & o\left(\frac{R_{n}(\pi / \delta)}{R_{n}}+\frac{R_{n}(n)}{R_{n}}\right)+o(1)=o(1)(n \rightarrow \infty)
\end{aligned}
$$

Therefore, these complete the proof of Theorem.

References

[1] M. Astrachan: Studies in the summability of Fourier series by Nörlund means. Duke Math. J., 2, 543-558 (1936).
[2] D. Borwein: On product of sequences. J. London Math. Soc., 33, 352-357 (1958).
[3] L. Fejer: Über die Bestimmung des Sprunges der Funktion aus ihrer Fourierreihe. J. Reine Angew. Math., 142, 165-188 (1913).
[4] H. Hirokawa and I. Kayashima: On a sequence of Fourier coefficients. Proc. Japan Acad., 50, 5762 (1974).
[5] S. P. Khare and V. K. Tripathi: On the behaviour of Fourier coefficients. Bull. Calcutta Math. Soc., 80, 217-222 (1988).
[6] I. Miyamoto and Y. Okuyama: On Nörlund summability of Legendre series. Math. Japon., 46, 349-358 (1997).
[7] R. Mohanty and M. Nanda: On the behaviour of Fourier coefficients. Proc. Amer. Math. Soc., 5, 79-84 (1954).
[8] C. T. Rajagopal: On the Nörlund summability of Fourier series. Proc. Cambridge Philos. Soc., 59, 47-53 (1963).
[9] A. N. Singh: Nörlund summability of Fourier series and its conjugate series. Bull. Calcutta Math. Soc., 82, 99-105 (1990).
[10] E. C. Titchmarsh: Theory of Functions. Oxford, pp. 440 (1949).

