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1. Preliminaries. Let k; be a real quadratic
field and e; (> 1) be the fundamental unit of k;. We
shall fix a unit 7 = 5?”1, which is an odd power
of the fundamental unit e; with ¢ > 0. Then there
exists some positive integer M such that n; is written

in the form

M+ vVM?+4

2

Let 7; be the field conjugate of ;. Put D = M? +4.
Then D is not necessarily square-free, and we denote
the square-free part of D by Dy. When we use the
notation +y or Fz, +y and —z correspond to the
upper case D = M? + 4, which will be called the
plus case, and —y and +z correspond to the lower
case D = M? — 4, which will be called the minus
case.

Put

m=

oo T

n \/5
Then the sequences {gp}nen and {hy}nen are the
non-degenerated second order linear recurrence se-

quences defined by

gn = N1 + 07,

In+2 = Mgn+1 + 9n; hn+2 - Mthrl + hna

with the initial terms go = 2, g1 = M and hy = 0,
hy = 1.

The purpose of this note is to report our results
on the class number hyx and the unit group Ex of
the biquadratic field K = Q(v/D, y/h3,,,1 — 1): see
Theorems 1 and 2. Only sketches of proofs will be
provided and details will be published elsewhere.

For any a, b € Z \ {0}, we put a ~ b if and only
if ab is a perfect square. So

“ ~ 2 <= a1 ~as and by ~ by.
b1 b
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Moreover, M? — D = ¥4 and g3, ,, — Dh3,; = F4
imply
ggn+1 - M2 = D(h%nqu - 1)

Then we shall verify that h3,,; — 1 # 1 and
h3,.1—1 o D except for finitely many indices n. So
except for finitely many indices n, we will construct
a family of real bicyclic biquadratic fields

KQ(@, h%nHl) (n>1).
Then K has three subfields:
]ﬁ:Q(\/ﬁ), k’2=Q< h§n+1_1>v

k3=Q<\/g%n+1—M2>.

We have a unit 72 in ko defined by

N2 = hani1 +/h3,00 — 1,

and we will denote by 5 the fundamental unit of k.

Concerning the recurrence sequence {gp}nen,
one can verify M|gap+1 by induction. So we also have
a unit 73 in kg = Q( (92n+1/M)? -1 ), namely

N3 = g2n+1/M + (92n+1/M)2 -1,

and we will denote by €3 the fundamental unit of k3.

Let E be the group (—1,e1,€2,¢3). Then the
group index [Ef : F] is called the unit index of K
and is known to be 1,2 or 4 in general. Let us quote
a result of Shorey-Stewart [14].

Lemma 1. Letd be an integer > 1. Then there
ezists a constant Cy, which is effectively computable
in terms of M and d such that for any n > C1,

gn % d and hy, #d.

Let us list several properties of the above two
linear recurrences {g, }nen and {hp fnen.

Proposition 1. For any index n > 0,

1) h2ntr + (FD" = gnhnt,

(il)  hon+1 = (F1)" = gnt1ha,

(ifi)  g2n+1 + (F1)"M = gngn+1,
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(IV) gon+1 — (:F].)nM = (M2 + 4)hnhn+1,
(V (hn7hn+1) =1and (g’rugn—i-l) - (M72)7
(Vi) hnyo £ hy = gnya,

(

|1 if nis even,
(G hngr) = {M if m is odd,

M if n is even,
(i) st = {3

if n is odd,
. [ (2,M) if nis even,
(i) (gn, MD) = {M if m is odd.

Using the above lemma and proposition, we ob-
tain the following theorem.

Theorem 1. There exists a computable con-
stant No such that for all n > Ny, {€1,e2,e3} is a
fundamental system of units of K and Neg = Neg =
+1. Moreover, the class number hx of K verifies the
identity

1
hg = thl Py Py,

where hy, is the class number of the quadratic sub-
field k; (1 <1i<3).
Sketch of the proof. Let us note that

TH+Vri—1r2 x4r4+Va?—r?

r B 2r(x + 1)

Step 1.
[K:Q]=4 <= h3, ,—14land h3,,; — 14 D.

One can easily show

Since h3, .1 — 1 = hophonyo with (hop, honto) = M,
one sees that

hop M
h3pir — 11 = <h22+2)'w (A4>
and

h diM
2 o ~ 2n ~ 1
hopi1—=1~D <= <h2n+2> (d2M> .
where dids = Dy with (di,ds) = 1. From Lemma 1,
one can easily verify that there exists a computable
constant Ny such that for n > Ny, [K: Q] =4.

Step 2. One can see
N2 € <€§> <~ h2n+1 +1~2 or h2n+1 —1~2.

Then the above last conditions can be reduced to one
of the following conditions:

()= @) 0 (o) o (5F)
(i) ~G)- G) (o) o ()

or
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From Lemma 1, there exists a computable constant
Ny > Nj such that for n > No, 1y & (€3). Similarly
there exists a computable constant N3 > Ny such
that for n > N3, n3 & (e2).

Step 3. Let n > N3. Then in the minus case
one sees that

VE1L € Ex <= /i € Ex
<~ M+2~h3,,—lor
M—2~h3, . —1

It is obvious that /g1 ¢ Ex in the plus case. So in
the same way as in Step 1, we can show that there
exists a computable constant N4 > N3 such that for
n > Ny, /1 € Ex. In the same way as above, one
can see that there exists an effectively computable
constant Ng > Ny such that, for n > Ny, \/e2 € Ex
and \/e3 € Ex and \/e162 € Ex and (/eses € Ex
and \/e1e3 € Ex and \/e162e3 € Ex. Inshort, B =
E for n > Np. ]

2. The case of an odd integer M. In this
section, we shall restrict ourselves to the case where
M is odd, i.e. D = M? +4 is odd. We will see that
the constant Ny in Theorem 1 can be taken to be 7;
we will also exhibit fundamental systems of units for
1 < n < 6. First we quote the following results of
Cohn [3, 4] and Ribenboim-MacDaniel [12].

Lemma 2. If M = 1 in the plus case and
r >0, then

gr~M <<= r=1or3,
gr ~2M << r =6.

If M = 3 in the plus case and r > 0, then g, # 2,
gr b 2M, and

gr~1 <= r=3,

gr~ M <= r=1.

If M = 3 in the minus case and r > 0, then g, % 1,
gr 4 2M, and

gr~2 < r=3,
gr~M <= r=1

If M =5 in the plus case and r > 0, then g, # 1,
gr % 2M, and

ngQ <j,>’l”:67
gr~M <= r=1.

If M = 27 in the minus case and r > 0, then g, % 1,
gr X 2M, and

Gr~ M <= r=1,

gr ~2 <= 1r=23.
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Elsewhere g, # 2, g o 2M, and

gr~1 <= r=1 (and M ~ 1),
gr ~ M <= r =1.

Using this lemma, one can get the following
result.

Theorem 2. Let M (and D = M? + 4) be
odd. Then the unit group Ex of K is given by

<_17€1a\/‘5a53>

ifn=>5 with M =1 in the plus case,
<_1761752;\/€73>

if n =2 with M such that M? = 22> F 1,
(=1,e1,¢62,/2283)

i n=1 for any M,

n =6 with M =1 in the plus case,

(—1,e1,62,/21€3)

if n =2 with M =5 in the minus case,
(—1,e1,62,€3)

otherwise.

Ex =

The fact /e1e3 & FEki except for n = 2 with
M =5 in the minus case can be shown in the follow-
ing way. First we see

Veres € By

Indn+1 ~ QM(M + 2)01‘ QM(M — 2)
— or

Pnhngt ~ 2M (M + 2) or 2M (M — 2).

By Lemma 2, one sees that the possible index
n = 2 and M must satisfy the conditions M +1 ~ 6,
and M—1~land M—2~3. Put M—1=22% M-
2 = 3y? and M +1 = 6z2. Then the existence of such
an integer M is equivalent to the existence of integer
solutions of the following simultaneous Fermat-Pell
equations

Let us rather consider the following equivalent equa-
tions

(1) {x2 -3y =1,

w? —2y% =2,

where w = 2z. With the help of a result of Rickert
(see (1.7) in [13]), we will show that these equations
have only one positive integer solution: (z,y,w) =
(2,1,2).

Lemma 3 (Rickert). Let u,v be non-zero in-
tegers. All integer solutions x, y, z of the following
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simultaneous Fermat-Pell equations
22 -3y’ =u
22— 2% =

max{|z], [y], |2} < (107 max{|ul, [v[})"*.

satisfy

Then to find the positive integer solutions of (1)
is equivalent to finding all non-negative integers m,n
for which

z =1 =(2+V3)"+(2-v3)")/2

Y =sn = ((24+V3)" = (2—V3)")/(2V3),

Y =pm = (1 +V2)?™H + (1 —2)2m+1) /2,
w =g = (L V2P — (1= V2 V2.

From Lemma 3, we see that (1+ \/5)27” < Pm <
(107 x 2)12 for m > 1 implies m < (42log(10) +
61og(2))/log(1 4 v/2) = 114.443--- < 115. We have
checked that for 0 < m < 114, p,, = s, only for
m = 0, n = 1, i.e., the simultaneous Fermat-Pell
equations (1) have only the positive integer solution
(z,y,w) = (2,1,2).

Acknowledgement. We would like to express
our warmest thanks to Prof. I. Wakabayashi, who
suggested us to use Rickert’s result to simplify our
first proof for solving the above Fermat-Pell equa-
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