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On the units and the class numbers of certain

composita of two quadratic fields

By Shin-ichi Katayama,∗) Claude Levesque,∗∗) and Toru Nakahara∗∗∗)

(Communicated by Shokichi Iyanaga, m. j. a., April 12, 1999)

1. Preliminaries. Let k1 be a real quadratic
field and ε1 (> 1) be the fundamental unit of k1. We
shall fix a unit η1 = ε2i+1

1 , which is an odd power
of the fundamental unit ε1 with i ≥ 0. Then there
exists some positive integer M such that η1 is written
in the form

η1 =
M +

√
M2 ± 4
2

.

Let η̄1 be the field conjugate of η1. Put D = M2±4.
Then D is not necessarily square-free, and we denote
the square-free part of D by D0. When we use the
notation ±y or ∓z, +y and −z correspond to the
upper case D = M2 + 4, which will be called the
plus case, and −y and +z correspond to the lower
case D = M2 − 4, which will be called the minus
case.

Put

gn = ηn
1 + η̄n

1 , hn =
ηn
1 − η̄n

1√
D

.

Then the sequences {gn}n∈N and {hn}n∈N are the
non-degenerated second order linear recurrence se-
quences defined by

gn+2 = Mgn+1 ± gn, hn+2 = Mhn+1 ± hn,

with the initial terms g0 = 2, g1 = M and h0 = 0,
h1 = 1.

The purpose of this note is to report our results
on the class number hK and the unit group EK of
the biquadratic field K = Q(

√
D,

√
h2

2n+1 − 1): see
Theorems 1 and 2. Only sketches of proofs will be
provided and details will be published elsewhere.

For any a, b ∈ Z \ {0}, we put a ∼ b if and only
if ab is a perfect square. So

(
a1

b1

)
∼

(
a2

b2

)
⇐⇒ a1 ∼ a2 and b1 ∼ b2.
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Moreover, M2 −D = ∓4 and g2
2n+1 −Dh2

2n+1 = ∓4
imply

g2
2n+1 −M2 = D(h2

2n+1 − 1).

Then we shall verify that h2
2n+1 − 1 6∼ 1 and

h2
2n+1−1 6∼ D except for finitely many indices n. So

except for finitely many indices n, we will construct
a family of real bicyclic biquadratic fields

K = Q
(√

D,
√

h2
2n+1 − 1

)
(n ≥ 1).

Then K has three subfields:

k1 = Q
(√

D
)

, k2 = Q
(√

h2
2n+1 − 1

)
,

k3 = Q
(√

g2
2n+1 −M2

)
.

We have a unit η2 in k2 defined by

η2 = h2n+1 +
√

h2
2n+1 − 1,

and we will denote by ε2 the fundamental unit of k2.
Concerning the recurrence sequence {gn}n∈N,

one can verify M |g2n+1 by induction. So we also have
a unit η3 in k3 = Q

(√
(g2n+1/M)2 − 1

)
, namely

η3 = g2n+1/M +
√

(g2n+1/M)2 − 1,

and we will denote by ε3 the fundamental unit of k3.
Let E be the group 〈−1, ε1, ε2, ε3〉. Then the

group index [EK : E] is called the unit index of K

and is known to be 1, 2 or 4 in general. Let us quote
a result of Shorey-Stewart [14].

Lemma 1. Let d be an integer > 1. Then there
exists a constant C1, which is effectively computable
in terms of M and d such that for any n ≥ C1,

gn 6∼ d and hn 6∼ d.

Let us list several properties of the above two
linear recurrences {gn}n∈N and {hn}n∈N.

Proposition 1. For any index n ≥ 0,
(i) h2n+1 + (∓1)n = gnhn+1,
(ii) h2n+1 − (∓1)n = gn+1hn,
(iii) g2n+1 + (∓1)nM = gngn+1,
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(iv) g2n+1 − (∓1)nM = (M2 ± 4)hnhn+1,
(v) (hn, hn+1) = 1 and (gn, gn+1) = (M, 2),
(vi) hn+2 ± hn = gn+1,

(vii) (gn, hn+1) =
{

1 if n is even,
M if n is odd,

(viii) (gn+1, hn) =
{

M if n is even,
1 if n is odd,

(ix) (gn,MD) =
{

(2,M) if n is even,
M if n is odd.

Using the above lemma and proposition, we ob-
tain the following theorem.

Theorem 1. There exists a computable con-
stant N0 such that for all n ≥ N0, {ε1, ε2, ε3} is a
fundamental system of units of K and Nε2 = Nε3 =
+1. Moreover, the class number hK of K verifies the
identity

hK =
1
4
hk1hk2hk3 ,

where hki is the class number of the quadratic sub-
field ki (1 ≤ i ≤ 3).

Sketch of the proof. Let us note that
√

x +
√

x2 − r2

r
=

x + r +
√

x2 − r2

√
2r(x + r)

.

Step 1. One can easily show

[K :Q] = 4 ⇐⇒ h2
2n+1 − 1 6∼ 1 and h2

2n+1 − 1 6∼ D.

Since h2
2n+1 − 1 = h2nh2n+2 with (h2n, h2n+2) = M ,

one sees that

h2
2n+1 − 1 ∼ 1 ⇐⇒

(
h2n

h2n+2

)
∼

(
M

M

)

and

h2
2n+1 − 1 ∼ D ⇐⇒

(
h2n

h2n+2

)
∼

(
d1M

d2M

)
,

where d1d2 = D0 with (d1, d2) = 1. From Lemma 1,
one can easily verify that there exists a computable
constant N1 such that for n ≥ N1, [K : Q] = 4.

Step 2. One can see

η2 ∈ 〈ε2
2〉 ⇐⇒ h2n+1 + 1 ∼ 2 or h2n+1 − 1 ∼ 2.

Then the above last conditions can be reduced to one
of the following conditions:

(
gn

hn+1

)
∼

(
1
2

)
,

(
2
1

)
,

(
M

2M

)
or

(
2M

M

)
,

or (
gn+1

hn

)
∼

(
1
2

)
,

(
2
1

)
,

(
M

2M

)
or

(
2M

M

)
.

From Lemma 1, there exists a computable constant
N2 ≥ N1 such that for n ≥ N2, η2 6∈ 〈ε2

2〉. Similarly
there exists a computable constant N3 ≥ N2 such
that for n ≥ N3, η3 6∈ 〈ε2

3〉.
Step 3. Let n ≥ N3. Then in the minus case

one sees that
√

ε1 ∈ EK ⇐⇒ √η1 ∈ EK

⇐⇒M + 2 ∼ h2
2n+1 − 1 or

M − 2 ∼ h2
2n+1 − 1.

It is obvious that
√

ε1 6∈ EK in the plus case. So in
the same way as in Step 1, we can show that there
exists a computable constant N4 ≥ N3 such that for
n ≥ N4,

√
ε1 6∈ EK . In the same way as above, one

can see that there exists an effectively computable
constant N0 ≥ N4 such that, for n ≥ N0,

√
ε2 6∈ EK

and
√

ε3 6∈ EK and
√

ε1ε2 6∈ EK and
√

ε2ε3 6∈ EK

and
√

ε1ε3 6∈ EK and
√

ε1ε2ε3 6∈ EK . In short, EK =
E for n ≥ N0.

2. The case of an odd integer M . In this
section, we shall restrict ourselves to the case where
M is odd, i.e. D = M2 ± 4 is odd. We will see that
the constant N0 in Theorem 1 can be taken to be 7;
we will also exhibit fundamental systems of units for
1 ≤ n ≤ 6. First we quote the following results of
Cohn [3, 4] and Ribenboim–MacDaniel [12].

Lemma 2. If M = 1 in the plus case and
r > 0, then

gr ∼M ⇐⇒ r = 1 or 3,

gr ∼ 2M ⇐⇒ r = 6.

If M = 3 in the plus case and r > 0, then gr 6∼ 2,
gr 6∼ 2M , and

gr ∼ 1 ⇐⇒ r = 3,

gr ∼M ⇐⇒ r = 1.

If M = 3 in the minus case and r > 0, then gr 6∼ 1,
gr 6∼ 2M , and

gr ∼ 2 ⇐⇒ r = 3,

gr ∼M ⇐⇒ r = 1.

If M = 5 in the plus case and r > 0, then gr 6∼ 1,
gr 6∼ 2M , and

gr ∼ 2 ⇐⇒ r = 6,

gr ∼M ⇐⇒ r = 1.

If M = 27 in the minus case and r > 0, then gr 6∼ 1,
gr 6∼ 2M , and

gr ∼M ⇐⇒ r = 1,

gr ∼ 2 ⇐⇒ r = 3.
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Elsewhere gr 6∼ 2, gr 6∼ 2M , and

gr ∼ 1 ⇐⇒ r = 1 (and M ∼ 1),
gr ∼M ⇐⇒ r = 1.

Using this lemma, one can get the following
result.

Theorem 2. Let M (and D = M2 ± 4) be
odd. Then the unit group EK of K is given by

EK =





〈−1, ε1,
√

ε2, ε3〉
if n = 5 with M = 1 in the plus case,
〈−1, ε1, ε2,

√
ε3〉

if n = 2 with M such that M2 = 2x2 ∓ 1,
〈−1, ε1, ε2,

√
ε2ε3〉

if
{

n = 1 for any M ,
n = 6 with M = 1 in the plus case,

〈−1, ε1, ε2,
√

ε1ε3〉
if n = 2 with M = 5 in the minus case,
〈−1, ε1, ε2, ε3〉
otherwise.

The fact
√

ε1ε3 6∈ EK except for n = 2 with
M = 5 in the minus case can be shown in the follow-
ing way. First we see
√

ε1ε3 ∈ EK

⇐⇒




gngn+1 ∼ 2M(M + 2)or 2M(M − 2)
or

hnhn+1 ∼ 2M(M + 2) or 2M(M − 2).

By Lemma 2, one sees that the possible index
n = 2 and M must satisfy the conditions M +1 ∼ 6,
and M−1 ∼ 1 and M−2 ∼ 3. Put M−1 = x2, M−
2 = 3y2 and M +1 = 6z2. Then the existence of such
an integer M is equivalent to the existence of integer
solutions of the following simultaneous Fermat-Pell
equations

{
x2 − 3y2 = 1,

y2 − 2z2 = −1.

Let us rather consider the following equivalent equa-
tions {

x2 − 3y2 = 1,

w2 − 2y2 = 2,
(1)

where w = 2z. With the help of a result of Rickert
(see (1.7) in [13]), we will show that these equations
have only one positive integer solution: (x, y, w) =
(2, 1, 2).

Lemma 3 (Rickert). Let u, v be non-zero in-
tegers. All integer solutions x, y, z of the following

simultaneous Fermat-Pell equations
{

x2 − 3y2 = u

z2 − 2y2 = v

satisfy

max{|x|, |y|, |z|} ≤ (107 max{|u|, |v|})12.
Then to find the positive integer solutions of (1)

is equivalent to finding all non-negative integers m,n

for which




x = rn = ((2 +
√

3)n + (2−√3)n)/2,

y = sn = ((2 +
√

3)n − (2−√3)n)/(2
√

3),
y = pm = ((1 +

√
2)2m+1 + (1−√2)2m+1)/2,

w = qm = ((1 +
√

2)2m+1 − (1−√2)2m+1)/
√

2.

From Lemma 3, we see that (1+
√

2)2m < pm ≤
(107 × 2)12 for m ≥ 1 implies m < (42 log(10) +
6 log(2))/ log(1 +

√
2) = 114.443 · · · < 115. We have

checked that for 0 ≤ m ≤ 114, pm = sn only for
m = 0, n = 1, i.e., the simultaneous Fermat-Pell
equations (1) have only the positive integer solution
(x, y, w) = (2, 1, 2).

Acknowledgement. We would like to express
our warmest thanks to Prof. I. Wakabayashi, who
suggested us to use Rickert’s result to simplify our
first proof for solving the above Fermat-Pell equa-
tions.
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