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A note on the Rankin-Selberg method

for Siegel cusp forms of genus 2

By Taro Horie∗)

Graduate School of Polymathematics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464–8602

(Communicated by Shokichi Iyanaga, m. j. a., Feb. 12, 1999)

The purpose of this note is to give an explicit
relation between certain Dirichlet series and spinor
zeta functions attached to Siegel cusp forms of genus
2; a part of results in [7] is generalized to the case
of any level. Thereby we point out that the method
of [7] to study spinor zeta functions is applicable to
higher levels.

1. Notations. We use standard notations,
found in [2]. We let Γ2 := Sp2(Z) be integral sym-
plectic 4×4-matrices and Γ1 be the elliptic full mod-
ular group. We set

Γg(N) :=
{(

A B

C D

)
∈ Γg| C ≡ O(mod N)

}
.

where A, B, C, D are g× g-matrices. We let ΓJ
1 (N)

be the semi direct product of Γ1(N) and Z2, which
is called the Jacobi group of level N .

Hg denotes the Siegel upper half space of genus
g consisting of complex g×g-matrices with positive
definite imaginary part. We often write

Z = X + iY =
(
τ z

z τ ′

)
∈ H2.

Let k be an integer > 2 and χ be a Dirichlet
character modulo N . We write Sk(N,χ) for the
space of holomorphic cusp forms on H2 of weight
k and character χ with respect to Γ2(N), and
Jcusp

k,l (N,χ) for the space of holomorphic Jacobi cusp
forms on H1×C of weight k, character χ and index l
with respect to ΓJ

1 (N). The Petersson inner product
on these spaces are normalized by

〈F,G〉N :=
∫

Γ2(N)\H2

F (Z)Ḡ(Z) |Y |k−3 dX dY

(F,G∈Sk(N,χ), Z = X + iY ∈ H2),

〈φ, ψ〉N :=
∫

ΓJ
1 (N)\H1×C

φ(τ, z) ψ̄(τ, z)

× exp
(
−4πly2

v

)
vk−3du dv dx dy
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(φ, ψ ∈Jcusp
k,l (N,χ),

τ = u+ iv ∈ H1, z = x+ iy ∈C).

We write simply e(∗) for exp(2πi∗).
2. Statement of Result.
Definition. Let F , G ∈ Sk(N,χ) be Siegel

cusp forms of level N and let M be a natural number
which divides N . For each γ ∈ Sp2(Z), we write

F |kγ(Z) =
∑
n≥1

φn,γ(τ, z)e
(
nτ ′

N

)
,

G|kγ(Z) =
∑
n≥1

ψn,γ(τ, z)e
(
nτ ′

N

)
.

Then we define the Rankin convolution series
DF,G;M (s) as ζ(2s− 2k + 4) times∑

n≥1

{∫
F

∑
γ∈Γ2(N)\Γ2(M)

φn,γ (τ, z) ψ̄n,γ(τ, z)(1)

× exp
(
−4πny2

vN

)
vk−3 du dv dx dy

}
n−s,

where F is a fundamental domain ΓJ
1 (M)\H1 × C,

and define its gamma factor by

D∗F,G;M (s) := (2π)−2s Γ(s) Γ(s− k + 2)DF,G;M (s).

In a special case of M = N , this is an obvious
generalization of the symmetric square series defined
by Rankin in the case of genus 1 ([10]):

DF,G;N (s) =
1
Ns

ζ(2s− 2k + 4)
∑
n≥1

〈φn, ψn〉N
ns

,

where φn (resp. ψn) denotes the n-th Fourier-Jacobi
coefficient of F (resp. G).

On the other hand, if F (Z) ∈ Sk(N,χ) is a
Hecke eigenform with T (n)F = λF (n)F for all the
Hecke operators T (n) with (n,N) = 1, one can as-
sociate with F the spinor zeta function which is an
Euler product of the form

ZF (s) :=
∏

p:prime
(p,N)=1

QF,p(p−s)−1,(2)
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QF,p(t) := 1− λ(p)t

+(λF (p)2 − λ(p2)− χ(p2)p2k−4)t2

−λF (p)χ(p2)p2k−3t3 + χ(p4)p4k−6t4

for Re(s) � 0 (cf. [1], (4.3.35), Proposition 3.3.35,
Exercise 3.3.38 and (4.2.11)). Its natural gamma fac-
tor is defined by

Z∗F (s) = (2π)−2sΓ(s)Γ(s− k + 2)ZF (s).

The modular forms which play an important
role in relating (1) to (2) are Poincaré series. For
a negative discriminant D = r2 − 4n, we define the
D-th Jacobi Poincaré series of index 1 by

PD,N (τ, z) = PD,N,χ(τ, z) :=
∑

γ∈ΓJ
1,∞\ΓJ

1 (N)

χ̄(d)

× 1
(cτ + d)k

e
(
− cz2

cτ + d
+ λ2 aτ + b

cτ + d
+

2λz
cτ + d

)
×e

(
n
aτ + b

cτ + d
+ r

z + λ(aτ + b)
cτ + d

)
∈ Jcusp

k,1 (N,χ),

where we write γ =
((

a b

c d

)
, λ, µ

)
∈ ΓJ

1 (N) and

ΓJ
1,∞ :=

{((
±1 b

0 ±1

)
, 0, µ

)}
⊂ ΓJ

1 (N). We de-

fine a Siegel modular form PD,N (Z) as the “Maass
lifting” of PD,N (τ, z) (see the section 3).

Now let us state our main result.
Theorem. For a cusp form F ∈ Sk(N,χ) and

a natural number M which divides N , we set

TrN
M (F ) :=

∑
γ∈Γ2(N)\Γ2(M)

F |kγ(Z) ∈ Sk(M,χ).

Suppose that TrN
M (F ) is a non-zero Hecke eigenform

for all the Hecke operators T (n) with (n,M) = 1.
Then for any negative fundamental discriminant D
we have a relation

DF,PD,M ;M (s) = dTrN
M (F ),D(s)ZTrN

M (F )(s).(3)

Here for TrN
M (F )(Z) =

∑
Q>0 Ã(Q)e(trQZ), by

writing the indices of Fourier coefficients by integral
ideals in Q(

√
D), we define a Dirichlet series

dTrN
M (F ),D(s) :=

1
Ns

∑
=|M∞

Ã(=)N=−s,(4)

where = runs through all ideals of the maximal order
in Q(

√
D) such that each of the prime ideals which

divides = also divides M and N= denotes the norm of
=. dTrN

M (F ),D(s) is also defined by a following mero-

morphic function on the whole s-plane :

1
Nsh

∑
ξ

∏
℘|M

(
1− ξ̄(℘)

N℘s−k+2

)−1 h∑
i=1

ξ(=i)Ã(=i),

where h = h(D) is the class number of Q(
√
D),

℘ runs through all prime ideals dividing M ,
{=i}i=1,...,h denotes a set of representatives of the
ideal class group and ξ runs through all ideal class
characters.

We shall write down the special case of M = N .
Let F ∈ Sk(N,χ) be a non-zero Hecke eigenform,
then for any negative fundamental discriminant D
we have a relation

ζ(2s− 2k + 4)
∑
n≥1

〈φn, PD,N |Vn〉N
ns

=
∑
=|N∞

A(=)
N=s

× ZF (s),

where A(=) (resp. φn(τ, z)) denotes the =-th (resp.
n-th) Fourier (resp. Fourier-Jacobi) coefficient of F ,
and Vn denotes the n-th Hecke operator which maps
Jcusp

k,1 (N,χ) to Jcusp
k,n (N,χ) (see the section 3).

3. Outline of proof. The proof proceeds
along the lines of the second proof in [7], which uses
“Andrianov’s formula” (7). First we prove

Theorem-definition (Saito-Kurokawa-Maass
lifting). Let φ(τ, z) ∈ Jcusp

k,1 (N,χ) be a Jacobi cusp
form of index 1. Then we have a lifting map from
Jcusp

k,1 (N,χ) to Sk(N,χ) via

φ(τ, z) 7→
∑
l≥1

φ|Vl(τ, z)e(lτ ′),

where Vl denotes the l-th Hecke operator which maps
Jcusp

k,1 (N,χ) to Jcusp
k,l (N,χ) and defined by

(φ|Vl)(τ, z) := lk−1
∑

γ∈Γ1(N)\M2(Z)
ad−bc=l, c|N, (a,N)=1

χ(a)

× 1
(cτ + d)k

e
(
−lcz2

cτ + d

)
φ

(
aτ + b

cτ + d
,

lz

cτ + d

)
,

where we write γ =
(
a b

c d

)
. We denote the image

of this map by S∗k(N,χ) and call it the Maass space
of level N and character χ.

Proof . For N = 1, see the proof of Theorem
6.2 in [2]. In the general case, the same proof also
works (cf. [8]).

We let PD,N (Z) be the image of PD,N (τ, z) (see
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the section 2) in S∗k(N,χ) under the lifting map:

PD,N (Z) :=
∑
l≥1

PD,N |Vl(τ, z)e(lτ ′).

For a half integral symmetric matrix T =(
a b/2
b/2 c

)
with D := b2 − 4ac, we can associate

with T a binary quadratic form

Q(x, y) = [a, b, c](x, y) = ax2 + bxy + cy2

of discriminant D, and an integral ideal (of some
order) in Q(

√
D):

= = aZ +
−b+

√
D

2
Z.

We occasionary write A(Q) or A(=) for Fourier co-
efficients of Siegel modular forms.

Proof of theorem. Write the Fourier expan-
sion and the Fourier-Jacobi expansion of Tr(F ) by

TrN
MF (Z) =

∑
Q>0

Ã(Q)e(trQZ)

=
∑
l>0

φ̃l(τ, z)e(lτ ′)

respectively.
We note that for all γ ∈ Γ2(M)

PD,M |kγ(Z) =
∑

l

PD,M |Vl(τ, z)e(lτ ′),

hence in the notations of (1) in Definition

ψn,γ =
{

0 n is not divisible by N
PD,M |Vl if n = Nl

.

So, the Nl-th coefficient of ζ(2s − 2k + 4)−1

DF,PD,M ;M (s) is equal to

〈
∑

γ

φlN,γ , PD,M |Vl〉M = 〈φ̃l|V ∗l , PD,M 〉M ,

where V ∗l : Jcusp
k,l (M,χ) → Jcusp

k,1 (M,χ) denotes the
adjoint operator of Vl (note that

∑
γ φlN,γ = φ̃l is a

Jacobi form of level M and index l).
At first, we notice an important fact that

PD,N (τ, z) (D-th Jacobi Poincaré series in
Jcusp

k,1 (N,χ)) is characterized by

〈φ, PD,N 〉N := λk,l,D cn,r(φ) (∀φ ∈ Jcusp
k,1 (N,χ)),(5)

where λk,l,D := 1
2Γ(k− 3

2 )π−k+3/2lk−2|D|−k+3/2 and
cn,r(φ) denotes the (n, r)-th Fourier coefficient of φ
with D = r2−4n. For the proof confer [5], p.520 (In
[5] only the full modular case is treared, but we can
easily follow the proof in the general case).

Next, we must calculate the action of V ∗l explic-
itly as in [7], p.554-557. This step is the key.

Then using this calculation and the characteri-
zation (5) of PD,M . We get

〈φ̃l|V ∗l , PD,M 〉M

=
h(D)∑
i=1

∑
d|l,(l/d,M)=1

χ̄(l/d)dk−2n(Qi; d)Ã
(
l

d
Qi

)
,

where {Qi}i=1,...,h(D) is a set of representatives of bi-
nary quadratic forms of discriminant D and n(Qi; d)
denotes

]{s(mod 2d)|s2 ≡ D (4d), [
s2 −D

4d
, s, d] ∼ Qi}.

Observing∑
n≥1

n(Qi;n)n−s = ζQi(s)ζ(2s)
−1,

where ζQi(s) is the (partial) zeta function of the class
of Qi, we obtain

DF,PD,M ;M (s)(6)

= N−s

h(D)∑
i=1

ζQi(s− k + 2)RQi,TrN
M (F ),M (s),

with

RQi,TrN
M (F ),M (s) :=

∑
n≥1,(n,M)=1

χ̄(n)Ã(nQi)
ns

.

We now recall Andrinov’s formula in [1], The-
orem 4.3.16. Take any fundamental discriminant
D and any Hecke eigenform F (Z) =

∑
Q>0A(Q)

e(trQZ) ∈ Sk(M,χ). Then for any class character
ξ of the class group H(D) and any completely mul-
tiplicative function ω on N(M) := {n ∈ N|(n,M) =
1}, it holds

Aξ(s)
∏

℘:prime ideal
(℘,M)=1

(
1− χ(℘)ξ(N℘)ω(N℘)

(N℘)s−k+2

)
(7)

×
∏

p:prime
(p,M)=1

QF,p(ω(p)p−s)−1

=
h(D)∑
i=1

ξ(Qi)
∑

n∈N(M)

ω(n)A(nQi)
ns

,

with

Aξ(s) :=
h(D)∑
i=1

ξ(Qi)A(Qi).
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Inverting this formula for F = TrN
M (F ), ω = χ̄ and

instituting in (6), we obtain (3).
4. Applications. DF,G;M (s) defined in the

section 2 has an integral representation ([6], Lemma
2):

D∗F,G;M (s) = π−k+2N−s〈FE∗s−k+2,M , G〉N ,

where Es,M (Z) denotes a certain Eisenstein series of
Klingen-Siegel type. From this we can deduce

Proposition ([6], Proposition 1 and the sec-
tion 4). All DF,G;M (s)’s with M |N have a meromor-
phic continuation to C. Πf |N (1−fs−k+2)DF,G;N (s),
where f runs through all square-free positive integers
dividing N , is entire if 〈F,G〉N = 0 and otherwise
has a simple pole at s = k as its only singularity,
and if N = p is a prime number we have

Ress=kDF,G;p(s) =
4kπk+2

(k − 1)!
1

(1 + p2)pk
〈F,G〉p.

Furthermore there exists a functional equation

P (s)D∗F,G;N (2k − 2− s)
= a finite sum of const.nsD∗F,G;M (s),

where M , n are natural numbers with M |N and P (s)
is a finite product of 1 − f2(k−s) with f |N . For ex-
ample, if N = p is a prime number we have

(1− p2(k−s))D∗F,G;p(2k − 2− s)

= (1− p2(s−k+2))D∗F,G;p(s)

−(1− p2(s−k+1))D∗F,G;1(s).

Using Proposition and Theorem in the case of
‘M = N ’ we obtain

Corollary 1. Let F ∈ Sk(N,χ) be a non-zero
Hecke eigen form. Suppose that dF,D(s) defined by
(4) is not identically zero for some fundamental dis-
criminant D. Then ZF (s) has a meromorphic con-
tinuation to the whole s-plane, the possible poles of
dF,D(s)ZF (s) are s = k and those corresponding to
zeros of

∏
f |N (1− fs−k+2), where f runs through all

square-free positive integers dividing N . If N = p is
a prime number, we have

1
πk+2〈F,Pp,D〉p

Ress=kZF (s) ∈ Q(F, ζh(D)),

where ζh(D) is a primitive h(D)-th root of unity.
Furthermore there exists a functional equation

P (s)dF,D(2k − 2− s)Z∗F (2k − 2− s)
= const .lsdF,D(s)Z∗F (s)

+ a finite sum of const.nsP2(s)D∗F,PN,D;M (s),

where M , l, n are natural numbers with M |N and
P (s) is a finite product of 1− f2(k−s) with f |N . For
example, if N = p is a prime number we have

(1− p2(k−s))dF,D(2k − 2− s)Z∗F (2k − 2− s)
= (1− p2(s−k+2))dF,D(s)Z∗F (s)

− (1− p2(s−k+1))D∗F,Pp,D;1(s).

Remark. Similar results to Corollary 1 for
principal congruence subgroups are reported in [3],
p.457 (without proof).

Corollary 2 (cf. [4], [7], [9]). Let F ∈ Sk(N,
χ) be a non-zero Hecke eigen form in the orthogonal
compliment of S∗k(N,χ) (the Maass space, see the
section 3). Then

∏
f |N (1 − fs−k+2)dF,D(s)ZF (s),

where f runs through all square-free positive integers
dividing N , is holomorphic for all s.
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