A note on Terai's conjecture concerning Pythagorean numbers ${ }^{*)}$

By Xigeng CHEN**) and Maohua LE**)
(Communicated by Shokichi IyANAGA, M. J. A., May 12, 1998)

Abstract

Let (a, b, c) be a primitive Pythagorean triple with $2 \mid a$. In this note we prove that if $b \not \equiv 1(\bmod 16), b^{2}+1=2 c, b$ and c are both odd primes, then the equation $x^{2}+b^{y}=c^{z}$ has only the positive integer solutions $(x, y, z)=(a, 2,2)$.

1. Introduction. Let $\boldsymbol{Z}, \boldsymbol{N}, \boldsymbol{Q}$ be the sets of integers, positive integers and rational numbers respectively. Let (a, b, c) be a primitive Pythagorean triple such that
(1) $a^{2}+b^{2}=c^{2}, a, b, c \in N$,

$$
\operatorname{gcd}(a, b, c)=1,2 \mid a
$$

Then we have
(2) $a=2 s t, b=s^{2}-t^{2}, c=s^{2}+t^{2}$,
where s, t are positive integers satisfying $s>t$, $\operatorname{gcd}(s, t)=1$ and $2 \mid s t$. In 1993, Terai [4] conjectured that the equation

$$
\begin{equation*}
x^{2}+b^{y}=c^{z}, x, y, z \in N \tag{3}
\end{equation*}
$$

has only the solution $(x, y, z)=(a, 2,2)$. This conjecture is not solved as yet. In [4], Terai proved that if $b \equiv 1(\bmod 4), b^{2}+1=2 c, b, c$ are odd primes, c splits in the imaginary quadratic field $K=\boldsymbol{Q}(\sqrt{-b})$ and the order d of a prime ideal divisor of [c] in K satisfies either d $=1$ or $2 \mid d$, then (3) has only the solution (x, $y, z)=(a, 2,2)$. In this note we prove the following general result.

Theorem. If $b \not \equiv 1(\bmod 16), b^{2}+1=2 c$, b, c are both odd primes, then (3) has only the solution $(x, y, z)=(a, 2,2)$.
2. Preliminaries. Lemma 1 ([2] and [3]). The equation
$X^{2}+1=2 Y^{n}, X, Y, n \in N, Y>1, n>2$, has only the solution $(X, Y, n)=(239,13,4)$.

Lemma 2 ([1, Lemma 2]). Let k be a positive integer. All solutions (X, Y, Z) of the equation

[^0]$$
X^{2}+Y^{2}=k^{2}, X, Y, Z \in Z, \quad \text { gcd }(X, Y)=1, Z>0
$$
are given by
\[

$$
\begin{aligned}
& Z=n, X+Y \sqrt{-1}=\lambda_{1}\left(X_{1}+\lambda_{2} Y_{1} \sqrt{-1}\right)^{n} \\
& \text { or } \lambda_{1}\left(Y_{1}+\lambda_{2} X_{1} \sqrt{-1}\right)^{n}, \\
& n \in N, \lambda_{1}, \lambda_{2} \in\{-1,1\},
\end{aligned}
$$
\]

where X_{1}, Y_{1} run through all positive integers satisfying

$$
X_{1}^{2}+Y_{1}^{2}=k, \operatorname{gcd}\left(X_{1}, Y_{1}\right)=1 .
$$

3. Proof of theorem. Since $b^{2}+1=2 c$ and $2 \nmid b$, we have

$$
\begin{equation*}
\left(\frac{b+1}{2}\right)^{2}+\left(\frac{b-1}{2}\right)^{2}=c \tag{4}
\end{equation*}
$$

Notice that c is an odd prime. We see from (4) that

$$
\begin{equation*}
\left(X_{1}, Y_{1}\right)=\left(\frac{b+1}{2}, \frac{b-1}{2}\right),\left(\frac{b-1}{2}, \frac{b+1}{2}\right) \tag{5}
\end{equation*}
$$

are all positive integers X_{1}, Y_{1} satisfying
(6) $\quad X_{1}^{2}+Y_{1}^{2}=c, \operatorname{gcd}\left(X_{1}, Y_{1}\right)=1$.

Hence, by (2) and (4), we get $s=(b+1) / 2, t=$ $(b-1) / 2, s=t+1$,
(7) $a=2 t(t+1), b=2 t+1, c=2 t^{2}+2 t+1$.

Let (x, y, z) be a solution of (3). Since b is an odd prime, if $2 \mid z$, then from (3) we get $c^{z / 2}+$ $x=b^{y}$, and $c^{z / 2}-x=1$. It implies that
(8)

$$
b^{y}+1=2 c^{z / 2}
$$

Since $b+1=2 t+2$ and $c \equiv 1(\bmod 2 t+$ 2) by (7), we find from (8) that $2 \mid y$. Since $b^{2}+$ $1=2 c$, if $z / 2=1$, then from (1) and (8) we get the solution $(x, y, z)=(a, 2,2)$. If $z / 2=2$, then we have $b^{y}+1=2 c^{2}=2\left(\left(b^{2}+1\right) / 2\right)^{2}$. It follows that $2 \equiv 1(\bmod b)$, a contradiction. If $z / 2>2$, by Lemma 1 , then we get (b, y, c, z) $=(239,2,13,8)$. It is impossible, by (3). Thus, (3) has only the solution $(x, y, z)=$ $(a, 2,2)$ with $2 \mid z$.

If $2 \mid y$ and $2 \nmid z$, then the equation $X^{2}+Y^{2}=c^{Z}, X, Y, Z \in Z$,
$\operatorname{gcd}(X, Y)=1, Z>0$ has a solution $(X, Y, Z)=\left(x, b^{y / 2}, z\right)$. Recall that c is an odd prime. By Lemma 2, we get from (4), (5), (6) and (7) that
(9) $x+b^{y / 2} \sqrt{-1}=\lambda_{1}\left(t+\lambda_{2}(t+1) \sqrt{-1}\right)^{z}$ or $\lambda_{1}\left((t+1)+\lambda_{2} t \sqrt{-1}\right)^{z}, \lambda_{1} \lambda_{2} \in\{-1,1\}$.
Since $2 \nmid z$, we see from (9) that either $b^{y / 2} \equiv 0$ $(\bmod t+1)$ or $b^{y / 2} \equiv 0(\bmod t)$. This is impossible, by (7).

If $2 \nmid y$ and $2 \nless z$, then from (3) we get $(-b / c)=1$, where $(* / *)$ is Jacobi's symbol. Since $c \equiv 1(\bmod 4)$ and $c \equiv 2 t^{2}(\bmod b)$ by (7), we have $1=(-b / c)=(b / c)=(c / b)=$ $\left(2 t^{2} / b\right)=(2 / b)$. It implies that $b \equiv \pm 1(\bmod$ 8) and
(10) $\quad t \equiv 0$ or $3(\bmod 4)$,
by (7). On the other hand, since $b \equiv-1(\bmod$ $2 t+2)$ and $c \equiv 1(\bmod 2 t+2)$, we get from (3) that $x^{2}=c^{z}-b^{y} \equiv 1^{z}-(-1)^{y} \equiv 2(\bmod$ $2 t+2)$. It implies that $x=2 x_{1}$, where x_{1} is a
positive integer. Then we get

$$
\begin{equation*}
2 x_{1}^{2} \equiv 1(\bmod t+1) \tag{11}
\end{equation*}
$$

If $t \equiv 3(\bmod 4)$, then (11) is impossible. So we have $t \equiv 0(\bmod 4)$, by (10). Further, by (11), we get $(2 / t+1)=1$. It implies that $t \equiv 0$ $(\bmod 8)$ and $b \equiv 1(\bmod 16)$. Thus, if $b \not \equiv 1$ $(\bmod 16)$, then (3) has no solution $(x, y$, z) with $2 \nmid z$. The theorem is proved.

References

[1] M.-H. Le: A note on the diophantine equation x^{2} $+b^{y}=c^{z}$. Acta Arith., 71, 253-257 (1995).
[2] W. Ljunggren: Zur Theorie der Gleichung $x^{2}+1$ $=D y^{4}$. Avh. Norske Vid Akad. Oslo., 5, 1-27 (1942).
[3] C. Störmer: L'équation $m \arctan \frac{1}{x}+n \arctan \frac{1}{y}$ $=k \frac{\pi}{4}$. Bull. Soc. Math. France, 27, 160-170 (1899).
[4] N. Terai: The Diophantine equation $x^{2}+q^{m}=p^{n}$. Acta Arith., 63, 351-358 (1993).

[^0]: 1991 Mathematics Subject Classification. 11 D 61.
 *) Supported by the National Natural Science Foundation of China and the Guangdong Provincial Natural Science Foundation.
 **) Department of Mathematics, Maoming Education College. P. R. China.
 **) Department of Mathematics, Zhanjiang Teachers College, P. R. China.

