A note on Terai's conjecture concerning Pythagorean numbers^{*)}

By Xigeng CHEN^{**)} and Maohua LE^{***)}

(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1998)

Abstract: Let (a, b, c) be a primitive Pythagorean triple with $2 \mid a$. In this note we prove that if $b \neq 1 \pmod{16}$, $b^2 + 1 = 2c$, b and c are both odd primes, then the equation $x^{2} + b^{y} = c^{z}$ has only the positive integer solutions (x, y, z) = (a, 2, 2).

1. Introduction. Let Z, N, Q be the sets of integers, positive integers and rational numbers respectively. Let (a, b, c) be a primitive Pythagorean triple such that

(1)
$$a^2 + b^2 = c^2$$
, $a, b, c \in N$,
gcd $(a, b, c) = 1, 2 | a$.

Then we have

(2) $a = 2st, b = s^2 - t^2, c = s^2 + t^2,$

where s, t are positive integers satisfying s > t, gcd(s, t) = 1 and 2 | st. In 1993, Terai [4] conjectured that the equation

 $x^2 + b^y = c^z, x, y, z \in N.$ (3)

has only the solution (x, y, z) = (a, 2, 2). This conjecture is not solved as yet. In [4], Terai proved that if $b \equiv 1 \pmod{4}$, $b^2 + 1 = 2c$, b, c are odd primes, c splits in the imaginary quadratic field $K = Q(\sqrt{-b})$ and the order d of a prime ideal divisor of [c] in K satisfies either d = 1 or $2 \mid d$, then (3) has only the solution (x, y, z) = (a, 2, 2). In this note we prove the following general result.

Theorem. If $b \neq 1 \pmod{16}$, $b^2 + 1 = 2c$, b, c are both odd primes, then (3) has only the solution (x, y, z) = (a, 2, 2).

2. Preliminaries. Lemma 1 ([2] and [3]). The equation

 $X^{2} + 1 = 2Y^{n}, X, Y, n \in \mathbb{N}, Y > 1, n > 2,$ has only the solution (X, Y, n) = (239, 13, 4).

Lemma 2 ([1, Lemma 2]). Let k be a positive integer. All solutions (X, Y, Z) of the equation

*) Supported by the National Natural Science Foundation of China and the Guangdong Provincial Natural Science Foundation.

***) Department Mathematics, Zhanjiang of Teachers College, P. R. China.

$$X^{2} + Y^{2} = k^{2}, X, Y, Z \in \mathbb{Z},$$

gcd(X, Y) = 1, Z > 0

are given by

$$Z = n, X + Y\sqrt{-1} = \lambda_1 (X_1 + \lambda_2 Y_1 \sqrt{-1})^n$$

or $\lambda_1 (Y_1 + \lambda_2 X_1 \sqrt{-1})^n$,

 $n \in N$, λ_1 , $\lambda_2 \in \{-1, 1\}$,

where X_1 , Y_1 run through all positive integers satisfying

 $X_1^2 + Y_1^2 = k$, gcd $(X_1, Y_1) = 1$. 3. **Proof of theorem.** Since $b^2 + 1 = 2c$ and $2 \not\mid b$, we have

(4)
$$\left(\frac{b+1}{2}\right)^2 + \left(\frac{b-1}{2}\right)^2 = c.$$

Notice that c is an odd prime. We see from (4) that

(5)
$$(X_1, Y_1) = \left(\frac{b+1}{2}, \frac{b-1}{2}\right), \left(\frac{b-1}{2}, \frac{b+1}{2}\right)$$

are all positive integers X_1 , Y_1 satisfying $X_1^2 + Y_1^2 = c$, gcd $(X_1, Y_1) = 1$. (6)

Hence, by (2) and (4), we get s = (b + 1)/2, t =(b-1)/2, s = t+1,

(7)
$$a = 2t(t+1), b = 2t+1, c = 2t^2 + 2t + 1.$$

Let (x, y, z) be a solution of (3). Since b is an odd prime, if 2 | z, then from (3) we get $c^{z/2} + x = b^y$, and $c^{z/2} - x = 1$. It implies that (8) $b^y + 1 = 2c^{z/2}$.

Since b+1 = 2t+2 and $c \equiv 1 \pmod{2t} + 2$ 2) by (7), we find from (8) that $2 \mid y$. Since $b^2 + b^2$ 1 = 2c, if z/2 = 1, then from (1) and (8) we get the solution (x, y, z) = (a, 2, 2). If z/2 = 2, then we have $b'' + 1 = 2c^2 = 2((b^2 + 1)/2)^2$. It follows that $2 \equiv 1 \pmod{b}$, a contradiction. If z/2 > 2, by Lemma 1, then we get (b, y, c, z)= (239, 2, 13, 8). It is impossible, by (3). Thus, (3) has only the solution (x, y, z) =(a, 2, 2) with 2 | z.

If $2 \mid y$ and $2 \nmid z$, then the equation $X^2 + Y^2 = c^Z$, X, Y, $Z \in \mathbb{Z}$,

¹⁹⁹¹ Mathematics Subject Classification. 11 D 61.

^{**)} Department of Mathematics, Maoming Education College. P. R. China.

gcd(X, Y) = 1, Z > 0has a solution $(X, Y, Z) = (x, b^{u/2}, z)$. Recall that c is an odd prime. By Lemma 2, we get from (4), (5), (6) and (7) that

(9) $x + b^{y/2}\sqrt{-1} = \lambda_1(t + \lambda_2(t+1)\sqrt{-1})^z$ or $\lambda_1((t+1) + \lambda_2t\sqrt{-1})^z$, $\lambda_1\lambda_2 \in \{-1, 1\}$. Since $2 \not\mid z$, we see from (9) that either $b^{y/2} \equiv 0 \pmod{t+1}$ or $b^{y/2} \equiv 0 \pmod{t}$. This is impossible, by (7).

If $2 \nmid y$ and $2 \nmid z$, then from (3) we get (-b/c) = 1, where (*/*) is Jacobi's symbol. Since $c \equiv 1 \pmod{4}$ and $c \equiv 2t^2 \pmod{b}$ by (7), we have $1 = (-b/c) = (b/c) = (c/b) = (2t^2/b) = (2/b)$. It implies that $b \equiv \pm 1 \pmod{8}$ and

(10) $t \equiv 0 \text{ or } 3 \pmod{4}$,

by (7). On the other hand, since $b \equiv -1 \pmod{2t+2}$ and $c \equiv 1 \pmod{2t+2}$, we get from (3) that $x^2 = c^z - b^y \equiv 1^z - (-1)^y \equiv 2 \pmod{2t+2}$. It implies that $x = 2x_1$, where x_1 is a positive integer. Then we get

(11) $2x_1^2 \equiv 1 \pmod{t+1}$.

If $t \equiv 3 \pmod{4}$, then (11) is impossible. So we have $t \equiv 0 \pmod{4}$, by (10). Further, by (11), we get (2/t+1) = 1. It implies that $t \equiv 0 \pmod{8}$ and $b \equiv 1 \pmod{16}$. Thus, if $b \not\equiv 1 \pmod{16}$, then (3) has no solution (x, y, z) with $2 \not\mid z$. The theorem is proved.

References

- [1] M.-H. Le: A note on the diophantine equation $x^2 + b^y = c^z$. Acta Arith., **71**, 253-257 (1995).
- [2] W. Ljunggren: Zur Theorie der Gleichung $x^2 + 1$ = Dy^4 . Avh. Norske Vid Akad. Oslo., 5, 1-27 (1942).
- [3] C. Störmer: L'équation *m* arc $\tan \frac{1}{x} + n \arctan \frac{1}{y}$ = $k\frac{\pi}{4}$. Bull. Soc. Math. France, **27**, 160–170 (1899).
- [4] N. Terai: The Diophantine equation $x^2 + q^m = p^n$. Acta Arith., 63, 351-358 (1993).

No. 5]