A note on Shafarevich-Tate sets for finite groups

By Takashi OnO
Department of Mathematics, The Johns Hopkins University, U. S. A. (Communicated by Shokichi Iyanaga, M. J. A., May 12, 1998)

1. A problem. Let K / k be a finite Galois extension of number fields and \mathfrak{g} be the Galois group: $\mathfrak{g}=\operatorname{Gal}(K / k)$. For a prime $\dot{\mathfrak{B}}$ in K, we denote by $\mathfrak{g}_{\mathfrak{P}}$ the decomposition group of \mathfrak{P} for $K / k: \mathfrak{g}_{\mathfrak{B}}=\left\{s \in \mathfrak{g} ; \mathfrak{B}^{s}=\mathfrak{B}\right\}^{1)}$. Let G be a left \mathfrak{g}-group. ${ }^{2)}$ A cocycle is a map $f: \mathfrak{g} \rightarrow G$ which satisfies
(1.1) $\quad f(s t)=f(s) f(t)^{s}, \quad s, t \in g$.

We denote by $Z(g, G)$ the set of all cocycles. Two cocycles f, f^{\prime} are equivalent, written $f \sim f^{\prime}$, if there exists $a \in G$ such that

$$
\begin{equation*}
f^{\prime}(s)=a^{-1} f(s) a^{s} \tag{1.2}
\end{equation*}
$$

We shall denote by $[f]$ the class of a cocycle f. The quotient
(1.3) $\quad H(g, G)=Z(g, G) / \sim$
is the cohomology set. $Z(g, G)$ contains a distinguished map 1 given by $1(s)=1$ for all $s \in$ g. Then a map $f \sim 1$ is said to be a coboundary. Therefore, we have
(1.4) f is a coboundary $\Leftrightarrow f(s)=a^{-1} a^{s}$ for some $a \in G$.

Since a decomposition group $\mathfrak{g}_{\mathfrak{B}}$ is a subgroup of \mathfrak{g}, we have the restriction map
(1.5) $\quad r_{\mathfrak{p}}: H(\mathrm{~g}, G) \rightarrow H\left(\mathrm{~g}_{\mathfrak{F}}, G\right)$
induced by $f \mapsto f \mid \mathfrak{g}_{\mathfrak{B}}, f \in Z(g, G)$. This map sends the distinguished class in $H(g, G)$ to the one in $H\left(\mathfrak{g}_{\mathfrak{\beta}}, G\right)$. Hence Ker $r_{\mathfrak{\beta}}$ makes sense. One finds easily that Ker $\boldsymbol{r}_{\mathfrak{F}}$ depends only on a prime \mathfrak{p} in k lying below \mathfrak{P} because if $\mathfrak{B}^{\prime} \mid \mathfrak{B}$ then $\mathfrak{B}^{\prime}=$ \mathfrak{P}^{t} for some $t \in \mathfrak{g}$ and $\mathfrak{g}_{\mathfrak{B}}=\operatorname{tg}_{\mathfrak{F}} t^{-1}$ which implies that ker $\boldsymbol{r}_{\mathfrak{B}}=\operatorname{Ker} \quad \boldsymbol{r}_{\mathfrak{B}},{ }^{3)}$ Therefore, the Shafarevich-Tate set:

1) By a prime we include one at infinity as usual; in this work, however, such a prime does not play any significant role.
2) If $s \in g$ and $a \in G$, then the action of s on a will be denoted by sa or a^{s}, interchangeably. Note that $\left(a^{t}\right)^{s}$ $=a^{(s t)}$ because $s(t a)=(s t) a$.
3) For $s \in \mathfrak{g}_{\mathfrak{B}}$, let $s^{\prime}=t s t^{-1} \in \mathfrak{g}_{\mathfrak{B}}{ }^{\prime}$. If $f(s)=a^{-1} a^{s}, f$ $\in \operatorname{Ker} r_{\mathfrak{F}}$, then, $f\left(s^{\prime}\right)=a^{\prime-1} a^{s^{\prime}}$ with $a^{\prime}=a^{t} f(t)^{-1}$.
4) We use standard notation like $e(\mathfrak{P} \mid \mathfrak{p}), f(\mathfrak{P} \mid \mathfrak{p})$ in Hilbert theory of Galois extensions.
makes sense.

$$
\begin{equation*}
\amalg(K / k, G)=\bigcap_{\mathfrak{p}} \operatorname{Ker} r_{p} \tag{1.6}
\end{equation*}
$$

(1.7) Problem. Given a Galois extension K / k and $\operatorname{ag} \mathfrak{g}$-group $G, \mathfrak{g}=\operatorname{Gal}(K / k)$, study the set \amalg ($K / k, G$).
(1.8) Remark. (i) We shall call an extension K / k trivial if $\mathfrak{g}=\mathfrak{g}_{\mathfrak{B}}$ for some \mathfrak{P} in K. When that is so, we have $\amalg(K / k, G)=1$, i.e. the Hasse principle holds for $(K / k, G)$ for any g group G. For example, every cyclic extension K / k is trivial since any generator s of g can be a Frobenius automorphism for some $\mathfrak{P}, s=(K / k$, $\mathfrak{P})$, by Chebotarev theorem. As an example of K / k which is trivial but not cyclic, we think of the case $k=\boldsymbol{Q}, K=\boldsymbol{Q}\left(\zeta_{t}\right), \zeta_{t}=\exp \left(2 \pi i / 2^{t}\right)$, $t \geq 3$; here we have $\mathfrak{g}=g_{\mathfrak{B}}$ for $\mathfrak{P} \mid 2$, because 2 is totally ramified in K. In 2 we shall study the relative cyclotomic field $K=k\left(\zeta_{t}\right)$ with $k=$ $\boldsymbol{Q}(\sqrt{\ell}), \ell$ an odd prime, and show, among others, that \# $\amalg(K / k, G)=2$ if $t=3$ and $\ell \equiv 7 \bmod 8, G=\left\langle\zeta_{t}\right\rangle$.
(ii) As another trivial case, let us mention that II $(K / k, G)=1$ for any extension K / k and G, if \mathfrak{g} acts trivially on G. This follows again from Chebotarev theorem, because $H(\mathfrak{g}, G)=$ $\operatorname{Hom}(\mathfrak{g}, G), \quad H\left(\mathfrak{g}_{\mathfrak{p}}, G\right)=\operatorname{Hom}\left(\mathfrak{g}_{\mathfrak{B}}, G\right)$ and $\mathfrak{g}=\bigcup_{t, \mathfrak{B}} t \mathfrak{g}_{\mathfrak{B}} t^{-1}, t \in \mathfrak{g}$.
2. An example. As announced in (1.8), (i), we shall consider the Galois extension $K=k\left(\zeta_{t}\right)$, $\zeta_{t}=\exp \left(2 \pi i / 2^{t}\right), t \geq 3, k=\boldsymbol{Q}(\sqrt{\ell}), \ell$ an odd prime. Let \mathfrak{B} be as before a prime in K and \mathfrak{p} be the one in k such that $\mathfrak{B} \mid \mathfrak{p}$. Since K / k is abelian, we can use $\mathfrak{g}_{\mathfrak{p}}$ instead of $\mathfrak{g}_{\mathfrak{P}}$ for the decomposition subgroup at $\mathfrak{ß}$ of $\mathfrak{g}=\operatorname{Gal}(K / k)$. Furthermore, we shall set $F=\boldsymbol{Q}\left(\zeta_{t}\right)$. Let P, p be primes in $\boldsymbol{F}, \boldsymbol{Q}$, respectively, both lying under the prime \mathfrak{B} in K. We have $[k: \boldsymbol{Q}]=[K: F]=2,[F: \boldsymbol{Q}]$ $=[K: \boldsymbol{Q}]=2^{t-1}$. Note that $\mathrm{g}=\operatorname{Gal}(K / k) \cong$ $\operatorname{Gal}(F / \boldsymbol{Q}) \cong \boldsymbol{Z} / 2 \boldsymbol{Z} \times \boldsymbol{Z} / 2^{t-2} \boldsymbol{Z}$ which is not cyclic. Now if $p \neq 2$, then $e(P \mid p)=1$ and so $e(\mathfrak{B} \mid \mathfrak{p})=1$; hence $\mathfrak{g}_{\mathfrak{p}}=\langle(K / k, \mathfrak{P})\rangle \neq \mathfrak{g} .{ }^{4)}$ So we have the following lemma:

(2.1) Lemma. K / k is trivial $\Leftrightarrow g_{\mathfrak{p}}=\mathfrak{g}$ for some $\mathfrak{p} \mid 2$. $^{\text {) }}$
(2.2) Lemma. If $\ell \equiv 1 \bmod 4$, then K / k is trivial.

In fact, since $e(\mathfrak{p} \mid 2)=1$, we have $e(\mathfrak{B} \mid P)=1$, so $e(\mathfrak{F} \mid \mathfrak{p})=e(\mathfrak{B} \mid 2)=e(\mathfrak{B} \mid P)$ $e(P \mid 2)=2^{t-1}=[K: k]$, and hence $g_{\mathfrak{p}}=\mathfrak{g}$.
Q.E.D.

To proceed further, we need the following lemma which is a special case of a theorem on decomposition of primes in a Kummer extension of prime relative degree. ${ }^{6)}$
(2.3) Lemma. Let F be a number field, ℓ a prime $\neq 2$ such that $\sqrt{\ell} \notin F$. Let \mathfrak{P} be a prime ideal in $K=F(\sqrt{\ell})$ and P be the one in F such that $\mathfrak{B} \mid P$. Assume that $P^{a} \| 2$ with $a>0$. Then we have
(i) $P=\mathfrak{B} \mathfrak{B}^{\prime}, \mathfrak{B} \neq \mathfrak{B}^{\prime}$, if $\left[\ell, P^{2 a+1}\right]=+1$,
(ii) $P=\mathfrak{B}$, if $\left[\ell, P^{2 a+1}\right]=-1$ but $\left[\ell, P^{2 a}\right]=$ +1 ,
(iii) $\quad P=\mathfrak{P}^{2}$, if $\left[\ell, p^{2 a}\right]=-1 .^{7)}$

Applying (2.3) to our situation where $F=$ $\boldsymbol{Q}\left(\zeta_{t}\right), \mathfrak{B} \mid 2, a=2^{t-1}$, we obtain the rule of decomposition of primes for the quadratic extension K / F :

$$
\left\{\begin{array}{r}
\left(\text { i) } e(\mathfrak{P} \mid P)=f(\mathfrak{P} \mid P)=1 \quad \text { if }\left[\ell, P^{2^{t}+1}\right]\right. \\
=+1, \\
\text { (ii) } e(\mathfrak{P} \mid P)=1, f(\mathfrak{P} \mid P)=2 \\
\text { if }\left[\ell, P^{2^{t}+1}\right]=-1 \quad \text { but }\left[\ell, P^{2^{t}}\right]=+1, \tag{2.4}\\
\text { (iii) } e(\mathfrak{B} \mid P)=2, f(\mathfrak{P} \mid P)=1 \\
\text { if }\left[\ell, P^{2^{t}}\right] \\
=-1 .
\end{array}\right.
$$

5) Note that, for $\mathfrak{p} \mid \infty, \mathfrak{g}_{\mathfrak{p}}$ is cyclic (of order at most 2).
6) See Satz 119 of [1] §39.
7) For a positive integer b, we set
$\left[\ell, P^{b}\right]=\left\{\begin{array}{l}+1, \text { if } x^{2} \equiv \ell \bmod P^{b} \text { has a solution in } \mathfrak{o}_{F}, \\ -1, \text { otherwise } .\end{array}\right.$

Now, suppose that $\ell \equiv 3 \bmod 4$. Then $e(\mathfrak{p} \mid 2)=2$. Hence $e(\mathfrak{F} \mid 2)=e(\mathfrak{B} \mid \mathfrak{p}) e(\mathfrak{p} \mid 2)$ $=2 e(\mathfrak{B} \mid \mathfrak{p})=e(\mathfrak{P} \mid P) e(P \mid 2)=2^{t-1} e(\mathfrak{P} \mid P)$; and so
(2.5) $\quad e(\mathfrak{B} \mid \mathfrak{p})=2^{t-2} e(\mathfrak{P} \mid P)$, if $\ell \equiv 3 \bmod 4$.

In the case (2.4), (iii), since $e(\mathfrak{P} \mid P)=2$, we have $e(\mathfrak{P} \mid \mathfrak{p})=2^{t-1}=[K: k]$, and so $\mathfrak{g}_{\mathfrak{p}}=\mathfrak{g}$, i.e. K / k is trivial. On the other hand, in the case (2.4), (ii), since $e(\mathfrak{P} \mid P)=1$, we have $e(\mathfrak{P} \mid \mathfrak{p})=2^{t-2}$. As for $f(\mathfrak{P} \mid \mathfrak{p})$, since $f(\mathfrak{P} \mid 2)$ $=f(\mathfrak{B} \mid \mathfrak{p}) f(\mathfrak{p} \mid 2)=f(\mathfrak{B} \mid \mathfrak{p})=f(\mathfrak{F} \mid P) f(P \mid 2)$ $=f(\mathfrak{P} \mid P)$ and $f(\mathfrak{P} \mid P)=2=f(\mathfrak{P} \mid \mathfrak{p})$, we have $\# \mathfrak{g}_{\mathfrak{p}}=e(\mathfrak{P} \mid \mathfrak{p}) f(\mathfrak{P} \mid \mathfrak{p})=2^{t-1}=[K: k]$, and so $\mathfrak{g}_{\mathfrak{p}}=\mathfrak{g}$, i.e. K / k is trivial, again. Therefore we obtain:
(2.6) Lemma. If $\ell \equiv 3 \bmod 4$ and $\left[\ell, p^{2^{t}+1}\right]=$ -1 (i.e. the case (2.4), (ii), (iii)), then K / k is trivial.

Now it remains to consider the last case (2.4), (i) ; $\ell \equiv 3 \bmod 4$, and $\left[\ell, P^{2^{t}+1}\right]=1$. In this case, by (2.5), we have $e(\mathfrak{P} \mid \mathfrak{p})=2^{t-2}$, and $f(\mathfrak{P} \mid 2)=f(\mathfrak{P} \mid \mathfrak{p}) f(\mathfrak{p} \mid 2)=f(\mathfrak{P} \mid \mathfrak{p})=f(\mathfrak{P} \mid P)$ $f(P \mid 2)=1$; hence $\# \mathfrak{g}_{\mathfrak{p}}=e(\mathfrak{P} \mid \mathfrak{p}) f(\mathfrak{P} \mid \mathfrak{p})=$ $2^{t-2}<2^{t-1}=\# \mathfrak{g}$, so $\mathfrak{g}_{\mathfrak{p}} \neq \mathfrak{g}$ i.e. K / k is not trivial in view of (2.1). Summarizing all arguments above, we have proved :
(2.7) Theorem. Let K / k be the relative cyclotomic extension defined by $k=\boldsymbol{Q}(\sqrt{\ell}), \ell$ an odd prime, K $=k\left(\zeta_{t}\right), \zeta_{t}$ a 2^{t}-th root of unity, $t \geq 3$. Then K / k is not trivial (in the sense of (1.8), (i)) if and only if $\ell \equiv 3 \bmod 4$ and the congruence $x^{2} \equiv \ell$ $\bmod \left(1-\zeta_{t}\right)^{2^{t}+1}$ has a solution in the ring of integers of $\boldsymbol{Q}\left(\zeta_{t}\right)$.

In order to get a counter example to the Hasse principle, i.e. to get a pair $(K / k, G)$ with $Ш(K / k, G) \neq 1$, we need to start with an extension K / k which is not trivial and then to search for a group G. To do this, let us assume $t=3$ in (2.7) and solve the congruence
(2.8) $\quad x^{2} \equiv \ell \bmod 4 P, P=\left(1-\zeta_{3}\right)$,

$$
\ell \equiv 3 \bmod 4
$$

where we used that $2^{t}+1=9,2=P^{4}$ and P^{9} $=4 P$. Now, let $\ell \equiv 7 \bmod 8$. Then $\ell^{2} \equiv 1 \bmod$ 16. If we put $x=(\ell+1+(\ell-1) i) / 2$, then $x^{2}-\ell=\left(\ell^{2}-1\right) i / 2 \equiv 0 \bmod 4 P \quad$ because $4(1-\zeta)\left(1+\zeta-\zeta^{2}-\zeta^{3}\right)=-8 i$, where $\zeta=$ $\zeta_{3}=(1+i) / \sqrt{2}$.

Having found that the extension K / k with k $=\boldsymbol{Q}(\sqrt{\ell}), \ell \equiv 7 \bmod 8, K=k(\zeta)=k(i, \sqrt{2})$, is not trivial, it is natural to examine the group
$G=\langle\zeta\rangle$ on which $\mathrm{g}=\operatorname{Gal}(K / k)$ acts canonically. This time, $\mathfrak{g}=\langle\sigma, \tau\rangle=\boldsymbol{Z} / 2 \boldsymbol{Z} \times \boldsymbol{Z} / 2 \boldsymbol{Z}$, and the action is given by

$$
(2.9) \quad \zeta^{\sigma}=\zeta^{-1}=\bar{\zeta}, \zeta^{\tau}=\zeta^{5}
$$

Since K / k is not trivial the family $\mathfrak{F}=\left\{\mathfrak{g}_{\mathfrak{p}}\right\}$ is simply that of all cyclic subgroups of $\mathfrak{g} ; \mathfrak{S}=$ $\{\langle 1\rangle,\langle\sigma\rangle,\langle\tau\rangle,\langle\sigma \tau\rangle\}$. Let $[f]$ be an element of $\amalg(K / k, G) \subset H(\mathfrak{g}, G)$. Since each $f(s)$, $s \in \mathfrak{g}$, is of the form $a(s)^{-1} a(s)^{s}, a(s) \in G$, on replacing f by a cocycle equivalent to it using $a(\sigma)$, we may assume that
(2.10) $\quad f(\sigma)=1, f(\tau)=a^{-1} a^{\tau}$.

Write $a=\zeta^{\alpha}, 0 \leq \alpha \leq 7$. Then $f(\tau)=\left(\zeta^{-1} \zeta^{5}\right)^{\alpha}$ $=\left(\zeta^{4}\right)^{\alpha}=(-1)^{\alpha}= \pm 1$. So there are only two possibilities for f. The one with $f(\tau)=1$ is of course the constant function $f=1$; the other one with $f(\tau)=-1$ can be realized by setting (2.12) $f(\sigma)=1, f(\tau)=\zeta^{-1} \zeta^{\tau}, f(\sigma \tau)=i^{-1} i^{\sigma \tau}$. Moreover, this $f \nsim 1$. Because, if there were a b $\in G$ such that $f(\sigma)=b^{-1} b^{\sigma}, f(\tau)=b^{-1} b^{\tau}$, then we would have $1=f(\sigma)=b^{-1} \bar{b}$ which implies that $b= \pm 1$, but then $-1=f(\tau)=b^{-1} b^{\tau}=1$, a contradiction. Consequently, we have proved: (2.13) When $\ell \equiv 7 \bmod 8, k=\boldsymbol{Q} \quad(\sqrt{\ell}), K=$ $k(\zeta), \quad G=\langle\zeta\rangle, \quad \zeta=\exp (\pi i / 4)$, the set ШII $(K / k, G)$ (with the natural action of $\mathfrak{g}=$ $\operatorname{Gal}(K / k)$ on $G)$ consists of two elements; the nontrivial cocycle is given by (2.12).
3. Correction to [2]. We take this opportunity to point out that (0.1) Theorem in [2] is incorrect as it stands. Let k be a number field, a a nonzero number in k and n an integer ≥ 1. The erroneous statement is:
(3.1) The equation $x^{n}=a$ has a solution x in k if and only if it has a solution x_{v} in k_{v} for every place v of k.
First, let us translate (3.1) into the language of the Shafarevich-Tate sets. Let μ_{n} be the group of nth roots of unity in \bar{k}. Passing to the cohomolo-
gy sequence of the short exact sequence

$$
1 \rightarrow \mu_{n} \rightarrow \bar{k}^{\times} \xrightarrow{n} \bar{k}^{\times} \rightarrow 1
$$

of $\operatorname{Gal}(\bar{k} / k)$-modules, we have

$$
\cdots k^{\times} \rightarrow k^{\times} \rightarrow H^{1}\left(k, \mu_{n}\right) \rightarrow H^{1}\left(k, \bar{k}^{\times}\right)=1
$$

by Hilbert theorem 90. Hence we get an isomorphism
(3.2) $\quad k^{\times} / k^{\times n} \cong H^{1}\left(k, \mu_{n}\right)$, (similarly for $\left.k_{v}\right)$.

The Shafarevich-Tate group of μ_{n} (in Galois cohomology) is
(3.3) $\amalg\left(k, \mu_{n}\right)=\operatorname{Ker}\left(H^{1}\left(k, \mu_{n}\right) \rightarrow \prod_{v} H^{1}\left(k_{v}, \mu_{n}\right)\right)$.

From (3.2), (3.3), we find
(3.4) $\quad(3.1) \Leftrightarrow \amalg\left(k, \mu_{n}\right)=1$.

Let $K=k\left(\mu_{n}\right)$, the relative nth cyclotomic field over k. Then it can be shown that
(3.5) $\quad \amalg\left(k, \mu_{n}\right) \cong \amalg\left(K / k, \mu_{n}\right)$
where the set on the right hand side is the one in (1.6). ${ }^{8)}$ Hence, by (3.4), (3.5), we get
(3.6) $\quad(3.1) \Leftrightarrow \amalg\left(K / k, \mu_{n}\right)=1$.

Now (2.13) shows that the set on the right hand side contains two elements when $n=8, k=$ $\boldsymbol{Q}(\sqrt{\ell}), \ell$ a prime $\equiv 7 \bmod 8$. Consequently, (3.1) is erroneous: The equation $x^{8}=16$ in k gives a counter example. In [2] we overlooked the case where K / k can be nontrivial (in the sense of (1.8)) though $\boldsymbol{Q}\left(\mu_{n}\right) / \boldsymbol{Q}$ is trivial.

On the other hand, (0.6) in [2] (Hasse principle for elliptic curves over k) is correct because only $n=2,4,6$, occur there and, in these cases, K / k 's are all trivial.

References

[1] E. Hecke: Vorlesungen über die Theorie der algebraischen Zahlen. Chelsea, New York (1970).
[2] T. Ono and T. Terasoma: On Hasse principle for $x^{n}=a$. Proc. Japan Acad., 73A, 143-144 (1997).
[3] T. Ono: Shafarevich-Tate set for $y^{4}=x^{4}-\ell^{2}$ (to appear).
8) See, e.g. Appendix of [3], especially (A.3), (A.5).

