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1. A problem. Let K/k be a finite Galois
extension of number fields and g be the Galois
group: g = Gal (K/k). For a prime P in K, we
denote by g, the decomposition group of B for
K/k:g,={s€g; B =8} Let G be a left
g—group.Z) A cocycle is a map f: g— G which
satisfies
(1.1)  f(st) =f(s)f(8)°, s, tE€q.

We denote by Z (g, G) the set of all cocycles.
Two cocycles f, f” are equivalent, written f ~ f’,
if there exists @ € G such that

(1.2) f(s) =a"'f(s)a".

We shall denote by [f] the class of a cocycle f.
The quotient

(1.3) H(g, G) = Z(g, G)/ ~

is the cohomology set. Z (g, G) contains a dis-
tinguished map 1 given by 1(s) =1 for all s €
g. Then a map f~ 1 is said to be a coboundary.
Therefore, we have

(1.4) f is a coboundary & f(s) = a 'a’ for
some a € G.

Since a decomposition group g, is a sub-
group of g, we have the restriction map
(1.5) r,: H(g, G) — H(g,, G)
induced by fHflg,, f€ Z (g, G). This map
sends the distinguished class in H(g, G) to the
one in H(g,, G). Hence Ker 7, makes sense. One
finds easily that Ker 7, depends only on a prime
p in k lying below B because if B’ | B then B’ =
B’ for some t € g and g, = tg‘gt_l which implies
that ker 7, = Ker 7’%’.3> Therefore, the
Shafarevich-Tate set:

1) By a prime we include one at infinity as usual; in
this work, however, such a prime does not play any sig-
nificant role.

2) If s € g and a € G, then the action of s on @ will
be denoted by sa or a’, interchangeably. Note that (a)°
= a*” because s(ta) = (st)a.

3) For s € g, let s’ = tst‘_,1 € g,/ If f(s) = ala’, f
€ Ker 7,, then, f(s) = a’"'a”" with @’ = a'f() ™",

4) We use standard notation like e (B | p), f(B|p) in

Hilbert theory of Galois extensions.

(1.6) W (K/k, G) = () Ker 7,
makes sense. p
(1.7) Problem. Given a Galois extension K/k
and a g-group G, g = Gal( K/ k), study the set T
(K/k, G).
(1.8) Remark. (i) We shall call an extension
K/ k trivial if g = gy for some P in K. When that
is so, we have IM(K/k, G) = 1, i.e. the Hasse
principle holds for (K/k, G) for any g-
group G. For example, every cyclic extension K/k
is trivial since any generator s of g can be a
Frobenius automorphism for some B, s = (K/k,
B ), by Chebotarev theorem. As an example of
K/ k which is trivial but not cyclic, we think of
the case k = Q, K= Q((,), ¢, = exp(2ni/2"),
t 2 3; here we have g = g, for P | 2, because 2
is totally ramified in K. In 2 we shall study the
relative cyclotomic field K = k ({,) with k=
Q(\/Z), £ an odd prime, and show, among others,
that # MmM(K/k,G)=2 if t=3 and
/=7mod8, G=<(>.
(ii) As another trivial case, let us mention that
M (K/k, G) =1 for any extension K/k and
G, if g acts trivially on G. This follows again
from Chebotarev theorem, because H (g, G) =
Hom (g, G), H (g, G) =Hom (g,, G) and
g=Utgt ', teq

t,B

2. An example. As announced in (1.8), (i),
we shall consider the Galois extension K = k((,),
{, = exp(27mi/2'), t =3, k= Q(/Z), £ an odd
prime. Let ¥ be as before a prime in K and p be
the one in k such that B | p. Since K/k is abelian,
we can use gp instead of g, for the decomposition
subgroup at P of g = Gal (K/k). Furthermore,
we shall set F = Q({,). Let P, p be primes in
F, @, respectively, both lying under the prime 8
in K. We have [k: Q1 = [K:F]1 =2, [F: Q]
=[K:Q1]=2"" Note that g = Gal (K/k) =
Gal(F/Q) = Z/2Z x Z/2'"*Z which is not cyc-
lic. Now if p# 2, then e (P|p) =1 and so
e(PB|p)=1; hence g, = <(K/k, B)> # g.y

So we have the following lemma:
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(2.1) Lemma. K/k is trivial < gy, = g for some

pl2?
(2.2) Lemma. If¢ = 1mod 4, then K/k is trivial.
In fact, since e (p|2 ) =1, we have

e(B|P) =1, s0e(B|p) =e(®]2) =e(B|P)
e(P|2) =2"'=[K :k], and hence g, = g.
Q.E.D.

To proceed further, we need the following
lemma which is a special case of a theorem on de-
composition of primes in a Kummer extension of
prime relative degree.G)
(2.3) Lemma. Let F be a number field, € a prime
* 2 such that V€ @ F. Let B be a prime ideal in
K = F((/f) and P be the one in F such that B | P.
Assume that P* | 2 with @ > 0. Then we have
(i) P=9PR, B+P, irle, Pl =+1,
i) P=9B, if [4 P =—1 but [¢4 P*] =

+ 1,
(iiiy P=% if[g p*1=—17

Applying (2.3) to our situation where F =
Q(), B2, a=2"" we obtain the rule of de-
composition of primes for the quadratic extension
K/F:

(i) e(B|P) =fB|P) =1 if [¢ P*"]

=+1,
(2.4) (0D e(BIP) =1, fB[P)=2

' if [¢, P*"'1=—1 butlg Pl=+1,

(iii) e(B| P) =2, ABIP) =1 if [ P°]

=-1

5) Note that, for p| o, gp is cyclic (of order at most
2).
6) See Satz 119 of [1] §39.

7) For a positive integer b, we set

. 2 __ b . .
le, P"] = { +1,ifx —.émodP has a solution in 0,
— 1, otherwise.
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Now, suppose that Z= 3mod4. Then
e(p|2) =2 Hence e(B|2) =e(Rlp)e(p|2)
=2¢(B|p) =e(BIP)e(P|2) =2""e(R|P);
and so
(2.5) e(B|p) =2 (P|P), if £=3mod4.
In the case (2.4), (iii), since e (B|P) =2, we
have e(B|p) =2"'=[K: k], and so gy, = g,
i.e. K/k is trivial. On the other hand, in the case
(2.4), (i), since e (B|P) =1 we have
e(Blp) =27 As for f(B|p), since f(B]2)
=f(RIp)fp[2) =f(B|p) =f(B|P)F(P|2)
=f(B|P)and f(R|P)=2=f(B|p), we
have #g, = e(B|pf(B|p) =27 = [K : k],
and so g, = g, i.e. K/k is trivial, again. Therefore
we obtain:

(2.6) Lemma. If #=3mod4 and [ 4, p
— 1 (i.e. the case (2.4), (ii), (iii)), then K/k is tri-
vial.

Now it remains to consider the last case

(2.4), (i); £= 3mod 4, and [£, P**"] = 1. In this
case, by (2.5), we have ¢ (B|p) =27 and
FOB12) =f(RIp)fpl2) = f(B|p) =f(B|P)
f(P12) =1; hence # g, =e(B[p)f(R|p) =
272 <2 = #g, s0 g, # g ie. K/k is not tri-
vial in view of (2.1). Summarizing all arguments
above, we have proved:
(2.7) Theorem. Let K/k be the relative cyclotomic
extension defined by k = Q(/€), £ an odd prime, K
= k(&,), &, a 2'-th root of unity, t = 3. Then K/k
is not trivial (in the semse of (1.8), (1)) if and
only if ¢=3mod4 and the congruence x° =4
mod (1 — C,)Z'H has a solution in the ring of
integers of Q({,).

In order to get a counter example to the Has-
se principle, i.e. to get a pair (K/k, G) with
I (K/k, G) + 1, we need to start with an ex-
tension K/k which is not trivial and then to
search for a group G. To do this, let us assume
t = 3 in (2.7) and solve the congruence
(2.8) z’=¢mod4P, P=(1— (),

¢ = 3 mod 4,
where we used that 2 +1 =09, 2 = P* and P’
= 4P. Now, let £= 7mod 8. Then ¢° =1 mod
16. If we put x= @+ 1+ ({—1)i)/2, then
z’— 4= ("= 1)i/2 = 0mod 4P because
40 -0Q +¢—8— ¢ = — 8i, where { =
= QA+ A2,

Having found that the extension K/k with k
=QWZ),¢=7mod8, K= k() = k(i V2),

is not trivial, it is natural to examine the group

z‘+1] —
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G = <{> on which g = Gal(K/k) acts canoni-
cally. This time, g = {0, 7> = Z/2Z X Z/2Z,
and the action is given by

(2.9) == 0=C

Since K/k is not trivial the family = {g,} is
simply that of all cyclic subgroups of g; § =
{K1>, o>, {t>, Cor>}. Let [f] be an element
of W(K/k, G) © H (g, G). Since each f(s),
s € g, is of the form a(s)'a(s)’, a(s) € G, on
replacing f by a cocycle equivalent to it using
a(o), we may assume that

(2.10) flo) =1, f(o) = a'a".

Write a = (%, 0 < @ < 7. Then f(z) = (£7'¢°)*
= ("% = (— 1) = % 1. So there are only two
possibilities for f. The one with f(z) =1 is of
course the constant function f = 1; the other one
with f(¥) = — 1 can be realized by setting
(2.12) flo) =1, flr) = L7, flor) = 4.
Moreover, this f # 1. Because, if there were a b
€ G such that f(o) = b0, f(z) = b7'b", then
we would have 1 = f(¢) = b'b which implies
that b= % 1, but then — 1 = f(z) = b 'd" =1,
a contradiction. Consequently, we have proved:
(2.13) When ¢=7mod8, k=Q (V¢),K=
k(L), G=XKC>, {=-exp(mi/4), the set
W (K/k, G) (with the mnatural action of g =
Gal(K/k) on G) consists of two elements; the non-
trivial cocycle is given by (2.12).

3. Correction to [2]. We take this oppor-
tunity to point out that (0.1) Theorem in [2] is in-
correct as it stands. Let k£ be a number field, @ a
nonzero number in k and # an integer = 1. The
erroneous statement is:

(3.1) The equation x" = a has a solution x in k
if and only if it has a solution x, in k, for every
place v of k.

First, let us translate (3.1) into the language of
the Shafarevich-Tate sets. Let ¢, be the group of
nth roots of unity in k. Passing to the cohomolo-

8) See, e.g. Appendix of [3], especially (A.3), (A.5).
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gy sequence of the short exact sequence
1—-u,— k> k—1

of Gal(k/k)-modules, we have

K — K > H'(k, p,) > H (K B =1
by Hilbert theorem 90. Hence we get an iso-
morphism
(3.2) k*/k™ = H'(k, pt,), (similarly for k,).
The Shafarevich-Tate group of g, (in Galois
cohomology) is
(3.3) (K, p,) = Ker (H'(k, 1,) = TH"(k,, £,)).
From (3.2), (3.3), we find
(3.4) 3.1)e m(k, u,) = 1.
Let K = k(gu,), the relative nth cyclotomic field
over k. Then it can be shown that
(3.5) Wk, p,) = m(K/k, 1)
where the set on the right hand side is the one in
(1.6).2) Hence, by (3.4), (3.5), we get
(3.6) (3.1)e W(K/k, u,) = 1.
Now (2.13) shows that the set on the right hand
side contains two elements when n =8, k =
Q(/), ¢ a prime = 7 mod 8. Consequently, (3.1)
is erroneous: The equation z°=16in k gives a
counter example. In [2] we overlooked the case
where K/k can be nontrivial (in the sense of
(1.8)) though Q(x,,)/Q is trivial.

On the other hand, (0.6) in [2] (Hasse princi-
ple for elliptic curves over k) is correct because
only n = 2, 4, 6, occur there and, in these cases,
K/K’s are all trivial.
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