A note on Shafarevich-Tate sets for finite groups

By Takashi ONO

Department of Mathematics, The Johns Hopkins University, U. S. A. (Communicated by Shokichi IYANAGA, M. J. A., May 12, 1998)

1. A problem. Let K/k be a finite Galois extension of number fields and g be the Galois group: g = Gal(K/k). For a prime $\dot{\mathfrak{B}}$ in K, we denote by $\mathfrak{g}_{\mathfrak{P}}$ the decomposition group of \mathfrak{P} for $K/k: \mathfrak{g}_{\mathfrak{P}} = \{s \in \mathfrak{g}; \mathfrak{P}^s = \mathfrak{P}\}^{(1)}$. Let G be a left g-group.²⁾ A cocycle is a map $f: \mathfrak{g} \to G$ which satisfies

(1.1) $f(st) = f(s)f(t)^s, s, t \in \mathfrak{g}.$

We denote by $Z(\mathfrak{g}, G)$ the set of all cocycles. Two cocycles f, f' are equivalent, written $f \sim f'$, if there exists $a \in G$ such that

(1.2) $f'(s) = a^{-1}f(s)a^{s}$.

We shall denote by [f] the class of a cocycle f. The quotient

(1.3) $H(\mathfrak{g}, G) = Z(\mathfrak{g}, G)/\sim$

is the cohomology set. Z(g, G) contains a distinguished map 1 given by 1(s) = 1 for all $s \in$ g. Then a map $f \sim 1$ is said to be a coboundary. Therefore, we have

(1.4) f is a coboundary $\Leftrightarrow f(s) = a^{-1}a^s$ for some $a \in G$.

Since a decomposition group g_{ψ} is a subgroup of g, we have the restriction map

(1.5) $r_{\mathfrak{g}}: H(\mathfrak{g}, G) \to H(\mathfrak{g}_{\mathfrak{g}}, G)$

induced by $f \mapsto f | g_{\mathfrak{g}}, f \in Z(\mathfrak{g}, G)$. This map sends the distinguished class in $H(\mathfrak{g}, G)$ to the one in $H(\mathfrak{g}, G)$. Hence Ker $r_{\mathfrak{g}}$ makes sense. One finds easily that Ker $r_{\mathfrak{g}}$ depends only on a prime \mathfrak{p} in k lying below \mathfrak{P} because if $\mathfrak{P}' | \mathfrak{P}$ then $\mathfrak{P}' =$ \mathfrak{P}^t for some $t \in \mathfrak{g}$ and $\mathfrak{g}_{\mathfrak{g}'} = t\mathfrak{g}_{\mathfrak{g}}t^{-1}$ which implies that ker $r_{\mathfrak{g}} = \operatorname{Ker} r_{\mathfrak{g}}^{(3)}$. Therefore, the Shafarevich-Tate set:

(1.6)
$$\coprod (K/k, G) = \bigcap_{\mathbf{h}} \operatorname{Ker} r_{\mathbf{p}}$$

makes sense.

(1.7) **Problem.** Given a Galois extension K/kand a g-group G, g = Gal(K/k), study the set III (K/k, G).

(1.8) Remark. (i) We shall call an extension K/k trivial if $\mathfrak{g} = \mathfrak{g}_{\mathfrak{B}}$ for some \mathfrak{P} in K. When that is so, we have $\coprod(K/k, G) = 1$, i.e. the Hasse principle holds for (K/k, G) for any ggroup G. For example, every cyclic extension K/kis trivial since any generator s of g can be a Frobenius automorphism for some \mathfrak{P} , s = (K/k), \mathfrak{P}), by Chebotarev theorem. As an example of K/k which is trivial but not cyclic, we think of the case k = Q, $K = Q(\zeta_t)$, $\zeta_t = \exp(2\pi i/2^t)$, $t \geq 3$; here we have $\mathfrak{g} = \mathfrak{g}_{\mathfrak{B}}$ for $\mathfrak{P} \mid 2$, because 2 is totally ramified in K. In 2 we shall study the relative cyclotomic field $K = k (\zeta_t)$ with k = $Q(\sqrt{\ell})$, ℓ an odd prime, and show, among others, that # III(K/k, G) = 2t = 3if and $\ell \equiv 7 \mod 8, \ G = \langle \zeta_t \rangle$.

(ii) As another trivial case, let us mention that III (K/k, G) = 1 for any extension K/k and *G*, if g acts trivially on *G*. This follows again from Chebotarev theorem, because H(g, G) =Hom (g, G), $H(g_{g}, G) =$ Hom (g_{g}, G) and $g = \bigcup_{t \neq g_{g}} t^{-1}$, $t \in g$.

2. An example. As announced in (1.8), (i), we shall consider the Galois extension $K = k(\zeta_t)$, $\zeta_t = \exp(2\pi i/2^t)$, $t \ge 3$, $k = Q(\sqrt{\ell})$, ℓ an odd prime. Let \mathfrak{P} be as before a prime in K and \mathfrak{p} be the one in k such that $\mathfrak{P} \mid \mathfrak{p}$. Since K/k is abelian, we can use $\mathfrak{g}_{\mathfrak{p}}$ instead of $\mathfrak{g}_{\mathfrak{P}}$ for the decomposition subgroup at \mathfrak{P} of $\mathfrak{g} = \operatorname{Gal}(K/k)$. Furthermore, we shall set $F = Q(\zeta_t)$. Let P, p be primes in F, Q, respectively, both lying under the prime \mathfrak{P} in K. We have [k: Q] = [K:F] = 2, [F:Q] $= [K:Q] = 2^{t-1}$. Note that $\mathfrak{g} = \operatorname{Gal}(K/k) \cong$ $\operatorname{Gal}(F/Q) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{t-2}\mathbb{Z}$ which is not cyclic. Now if $p \ne 2$, then $e(P \mid p) = 1$ and so $e(\mathfrak{P} \mid \mathfrak{p}) = 1$; hence $\mathfrak{g}_{\mathfrak{p}} = \langle (K/k, \mathfrak{P}) \rangle \ne \mathfrak{g}$.⁴⁾ So we have the following lemma:

¹⁾ By a prime we include one at infinity as usual; in this work, however, such a prime does not play any significant role.

²⁾ If $s \in g$ and $a \in G$, then the action of s on a will be denoted by sa or a^s , interchangeably. Note that $(a^t)^s = a^{(st)}$ because s(ta) = (st)a.

³⁾ For $s \in \mathfrak{g}_{\mathfrak{g}}$, let $s' = tst^{-1} \in \mathfrak{g}_{\mathfrak{g}}'$. If $f(s) = a^{-1}a^s$, $f \in \operatorname{Ker} r_{\mathfrak{g}}$, then, $f(s') = a'^{-1}a'^{s'}$ with $a' = a'f(t)^{-1}$.

⁴⁾ We use standard notation like $e(\mathfrak{P} \mid \mathfrak{p}), f(\mathfrak{P} \mid \mathfrak{p})$ in Hilbert theory of Galois extensions.

(2.1) **Lemma.** K/k is trivial $\Leftrightarrow g_{\mathfrak{p}} = \mathfrak{g}$ for some $\mathfrak{p} \mid 2.^{5}$

(2.2) Lemma. If $\ell \equiv 1 \mod 4$, then K/k is trivial. In fact, since $e(\mathfrak{p} \mid 2) = 1$, we have $e(\mathfrak{P} \mid P) = 1$, so $e(\mathfrak{P} \mid \mathfrak{p}) = e(\mathfrak{P} \mid 2) = e(\mathfrak{P} \mid P)$ $e(P \mid 2) = 2^{t-1} = [K:k]$, and hence $\mathfrak{g}_{\mathfrak{p}} = \mathfrak{g}$.

Q.E.D.

To proceed further, we need the following lemma which is a special case of a theorem on decomposition of primes in a Kummer extension of prime relative degree.⁶

(2.3) **Lemma.** Let F be a number field, ℓ a prime $\neq 2$ such that $\sqrt{\ell} \notin F$. Let \mathfrak{P} be a prime ideal in $K = F(\sqrt{\ell})$ and P be the one in F such that $\mathfrak{P} \mid P$. Assume that $P^a \parallel 2$ with a > 0. Then we have

- (i) $P = \mathfrak{PP}', \ \mathfrak{P} \neq \mathfrak{P}', \ if [\ell, P^{2a+1}] = +1,$ (ii) $P = \mathfrak{P}, \ if [\ell, P^{2a+1}] = -1 \ but [\ell, P^{2a}] = +1,$
- (iii) $P = \mathfrak{P}^2$, if $[\ell, p^{2a}] = -1$.⁷⁾

Applying (2.3) to our situation where $F = Q(\zeta_t)$, $\mathfrak{P} \mid 2$, $a = 2^{t-1}$, we obtain the rule of decomposition of primes for the quadratic extension K/F:

(2.4)
$$\begin{cases} \text{(i) } e(\mathfrak{P} \mid P) = f(\mathfrak{P} \mid P) = 1 & \text{if } [\ell, P^{2^{t+1}}] \\ = +1, \\ \text{(ii) } e(\mathfrak{P} \mid P) = 1, f(\mathfrak{P} \mid P) = 2 \\ \text{if } [\ell, P^{2^{t+1}}] = -1 & \text{but } [\ell, P^{2^{t}}] = +1, \\ \text{(iii) } e(\mathfrak{P} \mid P) = 2, f(\mathfrak{P} \mid P) = 1 & \text{if } [\ell, P^{2^{t}}] \\ = -1. \end{cases}$$

5) Note that, for $\mathfrak{p} \mid \infty$, $\mathfrak{g}_{\mathfrak{p}}$ is cyclic (of order at most 2).

6) See Satz 119 of [1] §39.

7) For a positive integer b, we set

 $[\ell, P^b] = \begin{cases} +1, \text{ if } x^2 \equiv \ell \mod P^b \text{ has a solution in } \mathfrak{o}_F, \\ -1, \text{ otherwise.} \end{cases}$

Now, suppose that $\ell \equiv 3 \mod 4$. Then $e(\mathfrak{p}|2) = 2$. Hence $e(\mathfrak{P}|2) = e(\mathfrak{P}|\mathfrak{p})e(\mathfrak{p}|2)$ $= 2e(\mathfrak{P}|\mathfrak{p}) = e(\mathfrak{P}|P)e(P|2) = 2^{t-1}e(\mathfrak{P}|P)$; and so

(2.5) $e(\mathfrak{P} | \mathfrak{p}) = 2^{t-2}e(\mathfrak{P} | P)$, if $\ell \equiv 3 \mod 4$. In the case (2.4), (iii), since $e(\mathfrak{P} | P) = 2$, we have $e(\mathfrak{P} | \mathfrak{p}) = 2^{t-1} = [K:k]$, and so $\mathfrak{g}_{\mathfrak{p}} = \mathfrak{g}$, i.e. K/k is trivial. On the other hand, in the case (2.4), (ii), since $e(\mathfrak{P} | P) = 1$, we have $e(\mathfrak{P} | \mathfrak{p}) = 2^{t-2}$. As for $f(\mathfrak{P} | \mathfrak{p})$, since $f(\mathfrak{P} | 2) = f(\mathfrak{P} | \mathfrak{p})f(\mathfrak{p} | 2) = f(\mathfrak{P} | \mathfrak{p})f(P | 2) = f(\mathfrak{P} | \mathfrak{p})f(P | 2) = f(\mathfrak{P} | \mathfrak{p})f(P | 2) = f(\mathfrak{P} | \mathfrak{p})f(\mathfrak{P} | 2) = g(\mathfrak{P} | \mathfrak{P})f(P | 2) = f(\mathfrak{P} | \mathfrak{P})f(\mathfrak{P} | 2) = f(\mathfrak{P} | \mathfrak{P})f(\mathfrak{P} | 2) = g(\mathfrak{P} | \mathfrak{P})f(\mathfrak{P} | \mathfrak{P}) = 2 = f(\mathfrak{P} | \mathfrak{P})f(\mathfrak{P} | 2) = f(\mathfrak{P} | \mathfrak{P})f(\mathfrak{P} | 2) = g(\mathfrak{P} | \mathfrak{P})f(\mathfrak{P} | \mathfrak{P}) = 2^{t-1} = [K:k]$, and so $\mathfrak{g}_{\mathfrak{p}} = \mathfrak{g}$, i.e. K/k is trivial, again. Therefore we obtain :

(2.6) Lemma. If $\ell \equiv 3 \mod 4$ and $[\ell, p^{2^{t+1}}] = -1$ (i.e. the case (2.4), (ii), (iii)), then K/k is trivial.

Now it remains to consider the last case (2.4), (i); $\ell \equiv 3 \mod 4$, and $[\ell, P^{2^{t+1}}] = 1$. In this case, by (2.5), we have $e(\mathfrak{P} \mid \mathfrak{p}) = 2^{t-2}$, and $f(\mathfrak{P} \mid 2) = f(\mathfrak{P} \mid \mathfrak{p})f(\mathfrak{p} \mid \mathfrak{p}) = 2^{t-2} < 2^{t-1} = \# \mathfrak{g}$, so $\mathfrak{g}_{\mathfrak{p}} \neq \mathfrak{g}$ i.e. K/k is not trivial in view of (2.1). Summarizing all arguments above, we have proved :

(2.7) **Theorem.** Let K/k be the relative cyclotomic extension defined by $k = Q(\sqrt{\ell})$, ℓ an odd prime, $K = k(\zeta_t)$, $\zeta_t a 2^t$ -th root of unity, $t \ge 3$. Then K/k is not trivial (in the sense of (1.8), (i)) if and only if $\ell \equiv 3 \mod 4$ and the congruence $x^2 \equiv \ell \mod (1 - \zeta_t)^{2^{t+1}}$ has a solution in the ring of integers of $Q(\zeta_t)$.

In order to get a counter example to the Hasse principle, i.e. to get a pair (K/k, G) with III $(K/k, G) \neq 1$, we need to start with an extension K/k which is not trivial and then to search for a group G. To do this, let us assume t = 3 in (2.7) and solve the congruence

(2.8)
$$x^2 \equiv \ell \mod 4P$$
, $P = (1 - \zeta_3)$,
 $\ell \equiv 3 \mod 4$

 $\ell \equiv 3 \mod 4$, where we used that $2^t + 1 = 9$, $2 = P^4$ and $P^9 = 4P$. Now, let $\ell \equiv 7 \mod 8$. Then $\ell^2 \equiv 1 \mod 16$. If we put $x = (\ell + 1 + (\ell - 1)i)/2$, then $x^2 - \ell = (\ell^2 - 1)i/2 \equiv 0 \mod 4P$ because $4(1 - \zeta)(1 + \zeta - \zeta^2 - \zeta^3) = -8i$, where $\zeta = \zeta_3 = (1 + i)/\sqrt{2}$.

Having found that the extension K/k with $k = Q(\sqrt{\ell}), \ \ell \equiv 7 \mod 8, \ K = k(\zeta) = k(i, \sqrt{2}),$ is not trivial, it is natural to examine the group No. 5]

 $G = \langle \zeta \rangle$ on which $\mathfrak{g} = \operatorname{Gal}(K/k)$ acts canonically. This time, $g = \langle \sigma, \tau \rangle = \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$, and the action is given by (2.9) $\zeta^{\sigma} = \zeta^{-1} = \overline{\zeta}, \ \zeta^{\tau} = \zeta^{5}.$

Since K/k is not trivial the family $\mathfrak{H} = \{\mathfrak{g}_{\mathfrak{p}}\}$ is simply that of all cyclic subgroups of \mathfrak{g} ; $\mathfrak{H} =$ $\{\langle 1 \rangle, \langle \sigma \rangle, \langle \tau \rangle, \langle \sigma \tau \rangle\}$. Let [f] be an element of $\operatorname{III}(K/k, G) \subset H(\mathfrak{g}, G)$. Since each $f(\mathfrak{s})$, $s \in \mathfrak{g}$, is of the form $a(s)^{-1}a(s)^{s}$, $a(s) \in G$, on replacing f by a cocycle equivalent to it using $a(\sigma)$, we may assume that

(2.10) $f(\sigma) = 1, f(\tau) = a^{-1}a^{\tau}$. Write $a = \zeta^{\alpha}, 0 \le \alpha \le 7$. Then $f(\tau) = (\zeta^{-1}\zeta^{5})^{\alpha}$ $= (\zeta^{4})^{\alpha} = (-1)^{\alpha} = \pm 1$. So there are only two possibilities for f. The one with $f(\tau) = 1$ is of course the constant function f = 1; the other one with $f(\tau) = -1$ can be realized by setting

(2.12) $f(\sigma) = 1, f(\tau) = \zeta^{-1} \zeta^{\tau}, f(\sigma\tau) = \tilde{i}^{-1} \tilde{i}^{\sigma\tau}.$ Moreover, this $f \not\sim 1$. Because, if there were a b $\in G$ such that $f(\sigma) = b^{-1}b^{\sigma}$, $f(\tau) = b^{-1}b^{\tau}$, then we would have $1 = f(\sigma) = b^{-1}\bar{b}$ which implies that $b = \pm 1$, but then $-1 = f(\tau) = b^{-1}b^{\tau} = 1$, a contradiction. Consequently, we have proved : (2.13) When $\ell \equiv 7 \mod 8$, k = Q $(\sqrt{\ell}), K =$ $k(\zeta), \quad G = \langle \zeta \rangle, \quad \zeta = \exp(\pi i/4), \quad the \quad set$ III (K/k, G) (with the natural action of g =Gal(K/k) on G) consists of two elements; the nontrivial cocycle is given by (2.12).

3. Correction to [2]. We take this opportunity to point out that (0.1) Theorem in [2] is incorrect as it stands. Let k be a number field, a a nonzero number in k and n an integer ≥ 1 . The erroneous statement is:

(3.1) The equation $x^n = a$ has a solution x in kif and only if it has a solution x_v in k_v for every place v of k.

First, let us translate (3.1) into the language of the Shafarevich-Tate sets. Let μ_n be the group of *n*th roots of unity in \bar{k} . Passing to the cohomology sequence of the short exact sequence

 $1 \rightarrow \mu_n \rightarrow \bar{k}^{\times} \xrightarrow{n} \bar{k}^{\times} \rightarrow 1$ of $Gal(\bar{k}/k)$ -modules, we have

 $\cdots k^{\times} \to k^{\times} \to H^{1}(k, \mu_{n}) \to H^{1}(k, \bar{k}^{\times}) = 1$

by Hilbert theorem 90. Hence we get an isomorphism

(3.2) $k^*/k^{*n} \cong H^1(k, \mu_n)$, (similarly for k_n). The Shafarevich-Tate group of μ_n (in Galois cohomology) is

(3.3) $\coprod (k, \mu_n) = \operatorname{Ker} (H^1(k, \mu_n) \to \Pi H^1(k_n, \mu_n)).$ From (3.2), (3.3), we find

 $(3.1) \Leftrightarrow \amalg(k, \mu_n) = 1.$ (3.4)

Let $K = k(\mu_n)$, the relative *n*th cyclotomic field over k. Then it can be shown that

 $\amalg(k, \mu_n) \cong \amalg(K/k, \mu_n)$ (3.5)

where the set on the right hand side is the one in (1.6)⁸⁾ Hence, by (3.4), (3.5), we get

 $(3.1) \Leftrightarrow \coprod (K/k, \mu_n) = 1.$ (3.6)

Now (2.13) shows that the set on the right hand side contains two elements when n = 8, k = $Q(\sqrt{\ell}), \ell$ a prime $\equiv 7 \mod 8$. Consequently, (3.1) is erroneous: The equation $x^8 = 16$ in k gives a counter example. In [2] we overlooked the case where K/k can be nontrivial (in the sense of (1.8)) though $Q(\mu_n)/Q$ is trivial.

On the other hand, (0.6) in [2] (Hasse principle for elliptic curves over k) is correct because only n = 2, 4, 6, occur there and, in these cases, K/k's are all trivial.

References

- [1] E. Hecke: Vorlesungen über die Theorie der algebraischen Zahlen. Chelsea, New York (1970).
- [2] T. Ono and T. Terasoma: On Hasse principle for $x^{n} = a$. Proc. Japan Acad., **73A**, 143-144 (1997).
- [3] T. Ono: Shafarevich-Tate set for $y^4 = x^4 \ell^2$ (to appear).

⁸⁾ See, e.g. Appendix of [3], especially (A.3), (A.5).