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1. Results. Throughout this.paper, we al-
ways assume n _> 2. Let p ()> 0 be of the
class C (Rn\O) and positively homogeneous of
degree 1, and P- p(Dx) 71p( ):x the cor-
responding Fourier multiplier. Suppose that
{;p () 1} has non-vanishing Gaussian
curvature. The objective of this brief article is to
show the following smoothing effect of in-
homogeneous generalized Schrdinger equations:

Theorem 1.1. Suppose I n/2 < s< 1/2,
1- n/2

(Rt R: ). Then there exists a unique solution
u(t,x) to

(, + iP) u- f
(1.1)

which Ix l ’ lDxl
Theorem 1,1 says that the solution gains the

regularity of order "s" in connection with the de-
cay order of the inhomogeneous term f plus an
extra gain of order " < 1/2", in the sense of
space-time norm. This is an improvement of the
result in Hoshiro [3] which showed Theorem 1.1
with P= Dzl and 0 < a= s < 1/2.

Since Hoshiro’s method deeply depends on
the properties of special functions, it is not suit-
able for handling the general operator P. To re-
move this obstacle is also in our focus. The most
essential part of the proof is the following resol-
vent estimate:

Theorem 1.2. Suppose 1-- n /2 < a< 1/2
and 1 n /2 < b < 1/2. Then we have

(1.2) sup
imp>0

L(R

Theorem 1.2 is partly proved in the master’s
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thesis of the second author [7]. The main tools
for the proof of it are the weighted L-bounded
ness of Fourier multipliers, the limiting absorp-
tion principle, and an estimate for the kernel of
the resolvent, which enable us to treat general
operators P. We shall explain the details in Sec-
tion 2.

Finally, the authors express gratitude to
Professor Toshihiko Hoshiro for his kindness to

provide us with his preprints, together with valu-
able comments.

2. Proof To begin with, we shall prove
Theorem 1.2. The argument here is based on [7].
Hereafter, we denote the, norm II" by I[" II.
We remark

1/2 < 1-- a < n/2, 1/2 1-- b < n/2,
O<a+b-2+n<n,

which will be used later frequently without any
notice, Furthermore, we may assume

(3--n)/2 <_ a+ b.
The general case can be reduced to this special
one because of the following:

Proposition 2.1 ([5, Theorem B*]). Suppose k
n/2, l n/2, 0 m n, and k+ l+ m=

n. Then we have

In fact, if a+ b < (-- )/2, we have
( n)/2 N (a + 8) + b and 1 /2 < (a +
8) < 1/2, where 8 (3- n)/2- (a + b). We
remark 0 < 8 < (n--1)/2. Then, by Proposi-
tion 2.1 and the estimate (1.2) with a replaced by
a+ 8, wehave

IMP>0

C sup
Imp>0
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which is the estimate (1..2).
Now, all we have to show is, by the scaling

argument, the following two estimates:

(2.1) sup Ixla-lDIa/(P 2) -Im, >0

(2,2/ sup
Im,>0

where p(p) (R+) is a function which is
equal to 1 near p 1.

The estimate (2.1) is a consequence of Prop-
osition 2.1 and the following:

Proposition 2.2 ([6, Chapter 11, Theorem 5]).
Suppose --n/2 < k < n/2. Then we have

Irl gn Rn
In fact, setting m() I(p()- 2)-

(1-- p o p) ( ), we have

IMP>0
I11

c sup
IMP>0_

cllx-
which is the estimate (2.1).

The estimate (2.2) is easily obtained from
Proposition 2.2 and the estimate

(2.3) sup Ix (P
Ira2>0
I11

which is a consequence of the following two
propositions: (The curvature condition of is

necessary for Proposition 2.4 only).
Proposition 2.3 ([1, Theorem 14.2.2]). Let

C(R"). Suppose k > 1/2 and > 1/2. Then
we have

sup (1 + zl)-(P
IMP>0- ell (1 +lxl)

Proposition 2.4 ([4, Theorem 6.3]). Let

o R+). Then we have

IMP>0

-- C Ix[ -(n-I)
a+bIn fact, setting (p)--p (f (p) and gf--

(C) p, wehave

sup <1- >x-<--1 <1_ v
Ira2>0

c x-by Proposition 2.3, where X (x) is the character-
istic function of the set {x;Ixl 1}. On the
other hand, since (3--n)/2 N a+ b implies
1-- aN b+ (n- 1)/2 < n/2, wehave

sup Xlz (P (D)o
Im2>O

IMP>0

ell x--<->f llIx- yl- cll-Here we have used Propositions 2.1 and 2.4.
Similarly, since (3 n)/2 a + b implies 1 b
N (n- 1)/2+a< n/2, wehave

sup [x (P g(D)xo
Im2 >0

c 1_ I[.
Thus we have obtained the estimate (2.3) and
completed the proof of Theorem 1.2.

As is also explained in Hoshiro [21 and [31,
we can construct the solution u to the inhomo-

geneous equation (1.1) by taking the weak limit
of the functions

u(t, x) (P + (r-- is))-f+(t x)

+ (P + (r + is))-f_(t x)

as s 0 in an appropriate function spaces. Here
fe denote the function f multiplied by the charac-
teristic function of the set {t; t2 0}. By
Theorem 1.2 with a- a, b s, this argument
can be justified, and we have Theorem 1.1.
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