Exotic group actions in dimension four and Seiberg-Witten theory

By Masaaki UE
Division of Mathematics, Faculty of Integrated Human Studies, Kyoto University
(Communicated by Heisuke Hironaka, M. J. A., April 13, 1998)

Topology of smooth 4 -manifolds has been studied extensively by Donaldson and. SeibergWitten theory. In [10] we used Donaldson invariants of degree 0 to give examples of exotic free actions of certain finite groups in dimension 4. In this paper we will generalize the result in [10] by Seiberg-Witten theory. We discuss Donaldson and Seiberg-Witten invariants for connected sums of 4 -manifolds and rational homology 4 -spheres in $\S 1$ according to [11]. In $\S 2$ by the constructions similar to those in [10] together with Cooper-Long's result [1] we show

Theorem. For any nontrivial finite group G there exists a 4-manifold that has infinitely many free G actions so that their orbit spaces are homeomorphic but mutually non-diffeomorphic.
§1. Invariants for some reducible manifolds. Let us recall the definitions of Donaldson and Seiberg-Witten invariants briefly. See [2], [6], [8], [12] for details. Let X be a closed smooth oriented 4 -manifold with $b_{1}(X)=0, b_{2}^{+}(X)>1$ and let P be a principal $S O$ (3) bundle over X with $w_{2}(P) \equiv w(\bmod 2)$ for some $w \in H^{2}(X, \mathbf{Z})$ (and hence P is a reduction of a $U(2)$ bundle \tilde{P}). Hereafter $w(\bmod 2)$ is denoted simply by w. Let \mathscr{G}_{P} be the set of automorphisms of P covered by those of \tilde{P} with det $=1$. Define \mathcal{M}_{P} to be the space of ASD (anti-self-dual) connections modulo \mathscr{G}_{P} with respect to a generic metric on X. Then for the symmetric product $z=x^{t} v_{1} \cdots v_{s}$ with the generator x of $H_{0}(X)$ and $v_{i} \in H_{2}(X)$, there exists a subspace $\mathcal{M}_{P} \cap V_{z}$ of codimension $4 t+$ $2 s$ in \mathcal{M}_{P} such that the Donaldson invariant $D_{X}^{w}(z)$ is defined by the number of points in \mathscr{M}_{P} $\cap V_{z}$ counted with sign for a bundle P with $w_{2}(P)$ $\equiv w$ and $-2 p_{1}(P)-3\left(1+b_{2}^{+}(X)\right)=4 t+$ $2 s$ (put $D_{X}^{w}(z)=0$ if there does not exist such a bundle). Here note that if there are no flat connections on any $S O$ (3) bundle over X with w_{2} $\equiv w$ then $\mathcal{M}_{P} \cap V_{z}$ is compact ([6]). Otherwise to avoid the flat connections we replace (X, P) by ($X \# \overline{C P}^{2}, P \# Q$), where Q is the reducible
$S O$ (3) bundle over $\overline{C P}^{2}$ with w_{2} being the Poincare dual of the generator z_{0} of $H_{2}\left(\overline{C P}^{2}, \mathbf{Z}\right)$ modulo 2 , and replace $D_{X}^{w}(z)$ by $D_{X \neq C P^{2}}^{w+z_{0}}\left(z z_{0}\right)$ (Morgan-Mrowka trick, [6]). In Seiberg-Witten theory, we consider a spin^{c} structure c on X, the associated \pm spinor bundle $W^{ \pm}$, and its determinant complex line bundle L over X. Then the Seiberg-Witten moduli space $\mathcal{M}_{X}(c)$ is the space of pairs of connections A on L and cross sections ϕ of W^{+}satisfying the Seiberg-Witten equation modulo $\operatorname{Map}\left(X, S^{1}\right)$.
$(S W) \mathscr{D}_{A}(\phi)=0, F^{+}(A)+\delta=\left(\phi^{*} \otimes \phi\right)_{0}$ (see [8],[12] for the definitions.) The space $\mathcal{M}_{X}(c)$ is a compact oriented manifold of dimension $d(L)=\left(c_{1}(L)^{2}-2 \chi-3 \sigma\right) / 4$ for a generic metric on X where χ and σ are the euler number and the signature of X. Hereafter $c_{1}(L)$ is denoted simply by L. The Seiberg-Witten (SW) invariants $S W_{X}(L)$ for L with $d(L)=0$ is the sum of the numbers of points in $\mathcal{M}_{X}(c)$ counted with sign for all spin^{c} structures c corresponding to L. (see [8] for the definition in case $d(L)>0$.) L is called a Seiberg-Witten (SW) class if $S W_{X}$ $(L) \neq 0 . X$ is called SW simple if $S W_{X}(L)=0$ whenever $d(L)>0$. Hereafter we assume that $H_{1}(X, \mathbf{Z})=0, b_{2}^{+}(X)>1$, and Y is a rational homology 4 -sphere. Moreover we assume that X is SW simple and KM simple, that is, $D_{X}^{w}\left(x^{2} z\right)=$ $4 D_{X}^{w}(z)$ for any $w \in H^{2}(X, \mathbf{Z}), z \in \operatorname{Sym}\left(H_{0}\right.$ $\left.(X) \oplus H_{2}(X)\right)$, and satisfies the following equation discussed in [12].

$$
\begin{aligned}
& (W) \quad D_{X}^{w}\left((1+x / 2) e^{v}\right) \\
= & 2^{2+(7 x+11 \sigma) / 4} e^{Q / 2} \Sigma(-1)^{\left(w^{2}+w L\right) / 2} S W_{X}(L) e^{L}(v)
\end{aligned}
$$

where $v \in H_{2}(X), Q$ is the intersection form of X, and the sum on the right hand side is taken over all the SW classes L of X.

The following results about these invariants for $X \# Y$ may be known to the experts, but we cannot find them in explicit forms in the literature.

Proposition 1.1 [11]. If X satisfies the above
conditions, then so does $X \# Y$. For any $v \in H_{2}(X$, $\mathbf{R}) \cong H_{2}(X \# Y, \mathbf{R})$ and for any $w+w^{\prime} \in H^{2}$ $(X, \mathbf{Z}) \oplus H^{2}(Y, \mathbf{Z})$, the both sides of (W) for $X \# Y$ are $\left|H_{1}(Y, \mathbf{Z})\right|$ times those of (W) for X, v, and w.

Proposition 1.2 [11]. (1) For each $w^{\prime} \in H^{2}$ (Y, \mathbf{Z}) with $w^{\prime} \equiv w_{2}(Y)(\bmod 2)$ there exists a complex line bundle L^{\prime} over Y with $c_{1} L^{\prime}=w^{\prime}$ and the set of $S W$ classes of $X \# Y$ is given by $\left\{L+L^{\prime}\right.$ $\mid L$ is a $S W$ class for $\left.X, L^{\prime} \equiv w_{2}(Y)(\bmod 2)\right\}$. The contribution of any spin ${ }^{c}$ structure associated with L $+L^{\prime}$ to $S W$ invariants is the same as $S W_{X}(L)$, and $S W_{X \# Y}\left(L+L^{\prime}\right)=\left|H_{1}\left(Y, \mathbf{Z}_{2}\right)\right| S W_{X}(L)$. (2) The number of L^{\prime} with $L^{\prime} \equiv w_{2}(Y)(\bmod 2)$ equals $\left|H_{1}(Y, \mathbf{Z})\right| /\left|H_{1}\left(Y, \mathbf{Z}_{2}\right)\right|$.

These propositions are proved by the standard Uhlenbeck theory. In either case the value of the invariant for $X \# Y$ is the product of that for X and the contributions from flat connections on Y. But to treat the case when $H_{1}(Y, \mathbf{Z})$ has 2-torsions we need the following observations [11].
(1) For any $w^{\prime} \in H^{2}(Y, \mathbf{Z})$ there exists a unique flat $S O$ (3) bundle over Y with w_{2} $\equiv w^{\prime}(\bmod 2)$. Any $S O(3)$-bundle P over $X \# Y$ with $w_{2}(P) \equiv w+w^{\prime} \in H^{2}(X, \mathbf{Z})$ $\oplus H^{2}(Y, \mathbf{Z})(\bmod 2)$ is the sum of the $S O$ (3)-bundle P_{X} over X with $w_{2}\left(P_{X}\right) \equiv$ $w(\bmod 2)$ and the flat $S O(3)$ bundle P_{Y} with $w_{2}\left(P_{Y}\right) \equiv w^{\prime}(\bmod 2)$.
(2) The moduli spaces of ASD connections over any bundle P over $X \# Y$ in (1) for a generic path of metrics have no $S O$ (2) nor O (2) reducible connections, and hence $D_{X \# Y}^{w+w^{\prime}}$ is well-defined after the MorganMrowka trick.
(3) \mathscr{G}_{P} is the kernel of some map from $A u t$ P to $H^{1}\left(X \# Y, \mathbf{Z}_{2}\right)$. In our case we can see by obstruction theory that this map is surjective.
In Donaldson's case we can see that the contribution from the conjugacy classes of the $S O$ (3) representations of $\pi_{1} Y$ to the intersection of the space of ASD connections modulo $A u t P$ and V_{z} equals $\left|H_{1}(Y, \mathbf{Z})\right| /\left|H_{1}\left(Y, \mathbf{Z}_{2}\right)\right|$. But $A u t P$ acts freely on the space of ASD connections by (2) and $A u t P_{X}=\mathscr{G}_{P_{X}}$ since $H_{1}(X, \mathbf{Z})=0$, so the contribution from Y to $\mathcal{M}_{P} \cap V_{z}$ is $\left|H_{1}(Y, \mathbf{Z})\right|$ by (3). In Seiberg-Witten's case, the contribution of any spin^{c} structure on Y is 1 because there is no
obstruction to constructing the solution from the pair of SW solution for X and that for Y, which is a pair of a flat connection and a zero spinor. We also note that $w_{2}(Y)$ is a mod 2 reduction of some element in $H^{2}(Y, \mathbf{Z})$. Thus we obtain the desired result.

Remark. In [10] the contribution of Y (denoted by c_{G}) to the space of ASD connections modulo the full gauge group, which equals $\mid H_{1}$ $(Y, \mathbf{Z})\left|/\left|H_{1}\left(Y, \mathbf{Z}_{2}\right)\right|\right.$, is considered when $\pi_{1} Y=$ G is the fundamental group of a spherical 3manifold.
§2. Examples of exotic free actions. First consider a nucleus $N(k)$ for $k \in \mathbf{Z}$ ([4]), whose framed link picture is given by the union of the trefoil knot with framing 0 and its meridian with framing $-k$. Any $N(k)$ contains a regular neighborhood $N(f)$ of a cusp fiber f of the elliptic surfaces, and $N(f)$ contains a 2 -torus T of square 0 (a general fiber). For any 4-manifold X containing $N(k)$, denote by X_{p} (resp. $\left.N(k)_{p}\right)$ the resulting manifold after p-surgery along T on X (resp. $N(k))\left([3]\right.$, [9]). In $N(k)_{p}$ and in X_{p} there is a multiple fiber f_{p} such that $p f_{p}$ is homologous to f. Now we consider a pair of closed oriented 4 -manifolds (X, Y) satisfying the following conditions.
(i) $H_{1}(X, \mathbf{Z})=0, b_{2}^{+}(X)>1, N(k) \subset X$, and X has a SW class.
(ii) Y is a rational homology 4 -sphere with an epimorphism from $\pi_{1} Y$ to a nontrivial finite group G such that the associated G-covering \tilde{Y} of Y is of the form $S^{2} \times S^{2}$ \# Z for some 4 -manifold Z.
Proposition 2.1 [4]. $\quad N(k)_{p}$ is spin if and only if k is even and p is odd. There is a homeomorph. ism between $N(k)_{p}$ and $N(k)_{p}$, inducing the identity on the boundaries if and only if both of them are spin or both of them are non-spin. X_{p} and $X_{p^{\prime}}$ are homeomorphic under the same condition.

Proposition 2.2 [7], [5]. There is a diffeomorphism between $N(k)_{p} \# S^{2} \times S^{2}$ and $N(k)_{p^{\prime}}$ $\# S^{2} \times S^{2}$ inducing the identity on the boundaries and also a diffeomorphism between $X_{p} \# S^{2} \times S^{2}$ and $X_{p^{\prime}} \# S^{2} \times S^{2}$, if and only if k, p, p^{\prime} satisfy the same condition as in (2-1).

Proposition 2.3 [3], [9]. The $S W$ classes for X_{p} are given by $\left\{L+(p-2 a-1) f_{p} \mid 0 \leq a\right.$ $\leq p-1, L$ is a $S W$ class for $X\}$ with $S W_{X_{p}}(L$ $\left.+(p-2 a-1) f_{p}\right)=S W_{X}(L)$. Here $L \cdot f=L \cdot T$
$=0$ and L belongs to both $H^{2}(X, \mathbf{Z})$ and $H^{2}\left(X_{p}\right.$, Z).

Note that X and X_{p} are SW simple [9], Corollary 1.6. Next consider the coverings $\overline{X_{p} \# Y}$ of $X_{p} \# Y$ associated with $\pi_{1}\left(X_{p} \# Y\right) \rightarrow \pi_{1}(Y) \rightarrow$ G.

Proposition 2.4. (1) $X_{p} \# Y$ and $X_{p^{\prime}} \# Y$ are not diffeomorphic if $p \neq p^{\prime}$. (2) $X_{p} \# Y$ and $X_{p^{\prime}} \# Y$ are homeomorphic and also $\overline{X_{p} \# Y}$ and $\overline{X_{p^{\prime}} \# Y}$ are diffeomorphic under the same condition as in Proposition 2.2.

Proof. (1) comes from (1-2) and (2-3), which show that the numbers of SW classes for $X_{p} \# Y^{\prime}$ s are different for different p 's since f_{p} is not a torsion class. The first part of (2) comes from (2-1). Finally we have $\overline{X_{p} \# Y}=\tilde{Y} \#|G| X_{p}$ $=Z \# S^{2} \times S^{2} \#|G| X_{p}$ and apply (2-2) on each X_{p} summand successively to show the rest.

The typical examples satisfying (i) are 1connected elliptic surfaces $E(k)$ without multiple fibers which contain $N(k)$ (many other examples are now known). To obtain Y satisfying (ii) consider any rational homology 3 -sphere M with an epimorhism from $\pi_{1} M$ to G and take an untwisted (resp. a twisted) spin $s(M)$ (resp. $s^{\prime}(M)$) of M which is obtained from $M \times S^{1}$ by untwisted (resp. twisted) surgery along a curve $* \times$ S^{1}. Then both $s(M)$ and $s^{\prime}(M)$ are rational homology 4 -spheres with $\pi_{1} s(M)=\pi_{1} s^{\prime}(M)=$ $\pi_{1} M$. Moreover the coverings \tilde{M} of M and $s^{(1)}(M)$ of $s^{\left({ }^{(\prime)}\right.}(M)$ associated with $\pi_{1}\left(s^{\left({ }^{(\prime)}\right.} M\right) \cong \pi_{1}(M) \rightarrow$ G satisfy

Proposition 2.5. $s^{\left({ }^{(1)}\right)}(M)$ is diffeomorphic to $s^{\left({ }^{\prime}\right)}(\tilde{M}) \#(|G|-1) S^{2} \times S^{2}$.

Proof. There is a cobordism W between \tilde{M} $\times S^{1}$ and $s^{(\prime)}(M)$ obtained from $\tilde{M} \times S^{1} \times[0$, 1] by attaching $|G| 2$-handles h_{i} along $|G|$ parallel circles ${ }_{i} \times S^{1} \times\{1\}$ on $\tilde{M} \times S^{1} \times\{1\}$, whose framings are all untwisted for $\overline{s(M)}$, and all twisted for $\overline{s^{\prime}(M)}$. By sliding $h_{i}(i \geq 2)$ along h_{1} we can replace them by the 2 -handles attached along the trivial circles with untwisted framings. Hence $s^{(\prime)}(M)$ is obtained from $s^{(\prime)}(\tilde{M})$ (obtained by h_{1}) by untwisted surgery on $|G|-1$ trivial circles. This proves $(2-5)$.

On the other hand Cooper-Long proved
Theorem [1]. Any nontrivial finite group G acts freely on a certain rational homology 3-sphere
\tilde{M} (as an orientation-preserving action).
For such \tilde{M}, the orbit space $M=\tilde{M} / G$ is also a rational homology 3 -sphere with epimorphism $\pi_{1}(M) \rightarrow G$ associated with the covering $\tilde{M} \rightarrow M$ since $H^{1}(M, \mathbf{Q})=H^{1}(\tilde{M}, \mathbf{Q})^{G}=0$. Hence by using M we obtain the main theorem from Proposition 2.4. For example, if $Y=$ $s(M)$ and $X=E(k)$ with k odd and $k>1$ then $X_{p} \# Y$ are all homeomorphic, mutually non-diffeomorphic, but $\overline{X_{p} \# Y}$ are all diffeomorphic to s
$(\tilde{M}) \#(|G|-1) S^{2} \times S^{2} \#|G| E(k) \cong s(\tilde{M}) \#(2 k$

$|G|-1) \mathbf{C P}^{2} \#(10 k|G|-1) \overline{\mathbf{C P}}^{2}$.

Acknowledgments. The author would like to thank Professors Akio Kawauchi and Sadayoshi Kojima for pointing out the reference [1] to him.

References

[1] D. Cooper and D. D. Long: Free actions of finite groups on rational homology 3 -spheres (1996) (preprint).
[2] S. K. Donaldson and P. B. Kronheimer: The Geometry of Four Manifolds. Oxford Math. Monographs (1990).
[3] R. Fintushel and R. Stern: Rational blowdowns of smooth 4-manifolds (1995)(preprint).
[4] R. Gompf: Nuclei of elliptic surfaces. Topology, 30, 479-511 (1991).
[5] R. Gompf: Sums of elliptic surfaces. J. Diff. Geom., 34, 93-114 (1991).
[6] P. Kronheimer and T. Mrowka: Embedded surfaces and the structure of Donaldson's polynomial invariants. J. Diff. Geom., 41, 573-734 (1995).
[7] R. Mandelbaum: Decomposing analytic surfaces. Geometric Topology (ed. J. C. Cantrell). Academic Press (1979).
[8]. J. Morgan: The Seiberg-Witten equations and applications to the topology of smooth four manifolds. Math. Notes. Princeton University Press (1996).
[9] J. W. Morgan, T. S. Mrowka, and Z. Szabó : Product formulas along T^{3} for Seiberg-Witten invariants. Math. Res. Letters, 4, 915-929 (1997).
[10] M. Ue: A remark on the exotic free actions in dimension 4. J. Math. Soc. Japan, 48, 333-350 (1996).
[11] M. Ue: A note on Donaldson and Seiberg-Witten invariants for some reducible 4-manifolds. (1996) (preprint).
[12] E. Witten: Monopoles and 4-manifolds. Math. Res. Letters, 1, 769-796 (1994).

