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Exotic group actions in dimension four and Seiberg-Witten theory

By Masaaki UE

Division of Mathematics, Faculty of Integrated Human Studies, Kyoto University
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Topology of smooth 4-manifolds has been
studied extensively by Donaldson and Seiberg-
Witten theory. In [10] we used Donaldson in-
variants of degree 0 to give examples of exotic
free actions of certain finite groups in dimension
4. In this paper we will generalize the result in

[10] by Seiberg-Witten theory. We discuss
Donaldson and Seiberg-Witten invariants for
connected sums of 4-manifolds and rational
homology 4-spheres in 1 according to [11]. In
2 by the constructions similar to those in [10]
together with Cooper-Long’s result [1] we show

Theorem. For any nontrivial finite group G
there exists a 4-manifold that has infinitely many

free G actions so that their orbit spaces are
homeomorphic but mutually non- diffeomorphic.

1. Invariants for some reducible manifolds.
Let us recall the definitions of Donaldson and
Seiberg-Witten invariants briefly. See [2], [6], [8],
[12] for details. Let X be a closed smooth
oriented 4-manifold with bI(X) -O, b(X) > 1
and let P be a principal SO (3) bundle over X
with w(P) =- w (mod2) for some w H(X, Z)
(and hence P is a reduction of a U(2) bundle /5).
Hereafter w (mod 2) is denoted simply by w. Let
p be the set of automorphisms of P covered by
those of /5 with det- 1. Define J//p to be the
space of ASD (anti-self-dual) connections modulo
p with respect to a generic metric on X. Then
for the symmetric product z xtvl v with the
generator x of Ho(X) and v He(X), there ex-
ists a subspace J//e 71 Vz of codimension 4t
2s in 3//p such that the Donaldson invariant

D(z) is defined by the number of points in
0 Vz counted with sign for a bundle P with we(P)
-= w and 2pl (P) 3 (1 + b (X)) 4t
2s (put Dx (z) 0 if there does not exist such a
bundle). Here note that if there are no flat con-
nections on any SO (3)bundle over X with we
=-- w then J// 71 Vz is compact ([6]). Otherwise to
avoid the flat connections we replace (X, P) by
(X#CP p#Q) where Q is the reducible

SO(3) bundle over CP with w being the Poin-

care dual of the generator zo of H (CP a, Z)
nw+0 (ZZo)modulo 2, and replace D (z)by x#-e-

(Morgan-Mrowka trick, [6]). In Seiberg-Witten
theory, we consider a spin structure c on X, the
associated +--- spinor bundle W +, and its determi-
nant complex line bundle L over X. Then the
Seiberg-Witten moduli space J/Ix(c) is the space
of pairs of connections A on L and cross sections

of W + satisfying the Seiberg-Witten equation
modulo Map (X,

(SW) a(0) 0, F +(A) + 6 (0" 0)o
(see [8],[12] for the definitions.) The space

3/lx(c) is a compact oriented manifold of dimen-
sion d(L) (cI(L) a- 2Z 3a)/4 for a generic
metric on X where Z and a are the euler number
and the signature of X. Hereafter cl (L)is de-
noted simply by L. The Seiberg-Witten (SW)
invariants SWx (L) for L with d(L) 0 is the
sum of the numbers of points in 3/lx(c) counted
with sign for all spin structures c corresponding
to L. (see [8] for the definition in case d(L) > 0.)
L is called a Seiberg-Witten (SW) class if SWx
(L) :# 0. X is called SW simple if SWx(L) 0
whenever d(L) > 0. Hereafter we assume that

HI(X, Z) 0, b(X) > 1, and Y is a rational
homology 4-sphere. Moreover we assume that X

W
is SW simple and KM simple, that is, Dx (xaz)
4Dc (z) for any w Ha(X, Z ), z Sym (Ho
(X) @Ha(X)), and satisfies the following

equation discussed in [1 2].

(W) D((1 + x/2)e)

2a+(+lia)/4eQ/a-](_ 1)(w+w)/aSWx(L)e(v)
where v Ha(X), Q is the intersection form of
X, and the sum on the right hand side is taken
over all the SW classes L of X.

The following results about these invariants

for X# Y may be known to the experts, but we

cannot find them in explicit forms in the litera-
ture.

Proposition 1.1 [1 1]. If X satisfies the above
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conditions, then so does X# Y. For any y He(X,
R) - He (X# Y, R) and for any w -w’ H
(X, Z) ( H (Y, Z ), the both sides of (W) for
X # Y are IH (Y, Z)I times those of (W) for X, v,
and w.

Proposition 1.2 [11]. (1) For each w’ H
(Y, Z with w’ =-- we(Y) (mod2) there exists a
complex line bundle L’ over Y with QL’ w’ and
the set of SW classes of X # Y is given by (L + L"
L is a SW class for X, L" - we(Y) (mod2)}. The

contribution of any spin structure associated with L
L" to SW invariants is the same as SWx (L),

and SWx#y(L + L’) IH(Y, Ze)lSWx(L). (2)
The number of L’ with L’ =- w (Y) (mod2) equals
IHI(Y, Z)I/IH,(Y, Z2) l.

These propositions are proved by the stan-
dard Uhlenbeck theory. In either case the value
of the invariant for X#Y is the product of that
for X and the contributions from flat connections
on Y. But to treat the case when H(Y, Z) has
2-torsions we need the following observntions

(1) For any w’ He(Y, Z) there exists a
unique flat SO(3) bundle over Y with we
----w’ (mod2). Any SO (3 )-bundle P over
X#Y with we(P) =- w+ w" He(X, Z)
(He(Y, Z)(mod2) is the sum of the
SO(3)-bundle Px over X with w.(Px) -w (mod2) and the flat SO (3) bundle Py
with we(PY) =- w" (mod 2).

(2) The moduli spaces of ASD connections
over any bundle P over X# Y in (1) for a

generic path of metrics have no SO(2) nor
0(2) reducible connections, and hence
w+w
#y is well-defined after the Morgan-

Mrowka trick.
(3) p is the kernel of some map from Ant
P to H (X #Y, Ze). In our case we can
see by obstruction theory that this map is
surjective.

In Donaldson’s case we can see that the con-
tribution from the conjugacy classes of the
SO(3) representations of 7r Y to the intersection
of the space of ASD connections modulo AutP
and V equals IU(Y, Z)I/IHI(Y, z)l. But AutP
acts freely on the space of ASD connections by
(2) and AutPx Px since H (X, Z) 0, so the
contribution from Y to / N Vz is IHI(Y, Z)I by
(3). In Seiberg-Witten’s case, the contribution of
any spin structure on Yis 1 because there is no

obstruction to constructing the solution from the
pair of SW solution for X and that for Y, which
is a pair of a flat connection and a zero spinor.
We also note that we(Y) is a mod 2 reduction of
some element in H (Y, Z). Thus we obtain the
desired result.

Remark, In [10] the contribution of Y (de-
noted by ca) to the space of ASD connections
modulo the full gauge group, which equals IH
(Y, Z)]/[H (Y, Ze)I, is considered when 7rl Y
G is the fundamental group of a spherical 3-
manifold.

2. Examples of exotic free actions. First
consider a nucleus N(k) for k Z ([4]), whose
framed link picture is given by the union of the
trefoil knot with framing 0 and its meridian with
framing k. Any N(k) contains a regular neigh-
borhood N(f) of a cusp fiber f of the elliptic
surfaces, and N(f) contains a 2-torus T of
square 0 (a general fiber). For any 4-manifold X
containing N(k), denote by Xp (resp. N(k)p) the
resulting manifold after p-surgery along T on X
(resp. N(k))([3], [9]). In N(k) and in X there is
a multiple fiber f such that pf is homologous to

f. Now we consider a pair of closed oriented
4-manifolds (X, Y) satisfying the following con-

ditions.
(i) H(X,Z) 0, b[(X) > 1, N(k) cX,

and X has a SW class.
(ii) Y is a rational homology 4-sphere with

an epimorphism from 7flY to a nontrivial
finite group G such that the associated
G-covering of Y is of the form S x S
# Z for some 4-manifold Z.

Proposition 2.1 [4]. N(k) is spin if and only

if k is even and p is odd. There is a homeomorph-
ism between N(k) and N(k), inducing the identi-

ty on the boundaries if and only if both of them are

spin or both of them are non-spin. X and X, are

homeomorphic under the same condition.
Proposition 2.2 [7], [5]., There is a dif-

feomorphism between N(k)# Sex S and N(k)p,
#S S inducing the identity on the boundaries

and also a diffeomorphism between X#S S and

X,#S Se, if and only if k, tg, p’ satisfy the
same condition as in (2-1).

Proposition 2.3 [3], [9]. The SW classes for
X are given by (L + (p.-- 2a-- 1 )f O - a
_p-- 1, L is a SW class for X) with SWxp (L
+ (p- 2a- 1)f) SWx(L). Here L’f- L’T
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0 and L belongs to both H (X, Z) and H (Xp,
Z).

Note that X and Xp are SW simple [9]_______2,
Corollary 1.6. Next consider the coverings X # Y
of X # Y associated with n" (X # Y) --* 7r (Y) ---*

G.
Proposition 2.4. (1) X # Y and Xp, # Y are

not diffeomorphic if p 4 p’. (2) Xp # Y and X., # Y
are homeomorphic and also Xp # Y and X, # Y are
diffeomorphic under the same conditidn as in Prop-
osition 2.2.

Proof (1) comes from (1-2) and (2-3),
which show that the numbers of SW classes for

X # Y’s are different for different p’s since f is
not a torsion class. The first part of (2) comes
from (2-1). Finally we have X#----’- #
Z# S S# ]G[Xp and apply (2-2) on each

X summand successively to show the rest.
The typical examples satisfying (i) are

connected elliptic surfaces E(k) without multiple
fibers which contain N(k) (many other examples
are now known). To obtain Y satisfying (ii) con-
sider any rational homology 3-sphere M with an
epimorhism from 7rtM to G and take an untwisted
(resp. a twisted) spin s(M)(resp, s’(M))of
M which is obtained from M S by untwisted
(resp. twisted) surgery along a curve *
St. Then both s (M)and s’ (M)are rational
homology 4-spheres with 7rts (M) n’ts’ (_M_.M)
7rtM. Moreover the coverings of M and S’
of s’ (M) associated with 7r (s’M) - 7r (M)--
G satisfy

(,.)
Proposition 2.5. s (M) is diffeomorphic to

s <’ (#) # (I GI 1) S x S.
Proof There is a cobordism W between

x S and s) obtained from x S x [0,
11 by attaching IGI 2-handles h, along IGI
parallel circles * x S x {1} on/ x S x {1},
whose framings are all untwisted for s (M), and
all twisted for s’ (/YD. By sliding h (i-> 2
along h we can replace them by the 2-handles
attached along the trivial circles with untwisted
framings. Hence s’ (M) is obtained from s

’) (/r)
(obtained by ht) by untwisted surgery on GI- 1
trivial circles. This proves (2-5).

On the other hand Cooper-Long proved
Theorem [1]. Any nontrivial finite group G

acts freely on a certain rational homology 3-sphere

1I (as an orientation-preserving action).
For such /17/, the orbit space M I/G is

also a rational homology 3-sphere with epi-
morphism 7r (M)--* G associated with the cover-
ing -- M since H (M, Q) H (217/, Q) 0.
Hence by using M we obtain the main theorem
from Proposition 2.4. For example, if Y=
s(M) and X = E(k) with k odd and k > 1 then

X # Y are all horneomorphic, mutually non-dif-
feomorphic, but X # Y are all diffeomorphic to s

(i#/) # (IG[- 1)S x S # GIE(k) = s (iPl) # (2k

IGI- 1)CP# (loklCl- 1)CP.
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