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Introduction. By a curve we shall ,mean a
connected compact Riemann surface. Let [ (D) :
= dim H°(C, 6(D)) and ¢(D) : =deg D — 2I(D)
+ 2 for a divisor D on a curve C of genus g =
2. It is easy to check ¢(D) = ¢(K. — D) by us-
ing the Riemann-Roch theorem. Here K. is a
canonical divisor of C. Clifford’s theorem states
that ¢(D) = 0 if I(D) > 0 and I(K. — D) > 0;
moreover if there is a divisor D such that
I(D) >0, ¢c(D) = 0 but D+ 0 and D# K_, then
C is a hyperelliptic curve. In other words, we
can say that a curve has a special divisor D with
¢ (D) =0 if and only if it is O-hyperelliptic,
where a special divisor D means 2 < degD < ¢
—1 and /(D) >0(s0ol(K.— D) >0),ag-
hyperelliptic curve means a curve which is a
double covering of a curve of genus g’.

We would like to classify double coverings
of a curve with small genus by the index cliff
(C): = min{c(D) : D is a special divisor on C,
1(D) = 2}. We show that a curve having a spe-
cial divisor D with small ¢(D) is g’-hyperelliptic
with ¢’ < ¢(D)/2 [Theorem 1], and conversely, a
g’-hyperelliptic curve has a special divisor D
with ¢ (D) = 2¢’ [Theorem 2]. In particular, we
obtain a necessary and sufficient condition for a
curve to be 1-hyperelliptic [Corollary].

Main results. Theorem 1. Let C be a curve
of genus g = 2. Assume that there is an effective
base-point-free divisor D with deg D < g— 1, (D)
> ¢(D) + 3. Then ¢ (D) is even and C is a g'-
hyperelliptic curve with some g° < ¢(D)/2, g = 6g’
+ 5.

Proof. To give a proof of this theorem, we
use the following inequality of Castelnuovo [1]
(p.116):

Lemma. Let C’ be a curve that admits a biva-
tional mapping onto a (not necessarily smooth) non-
degenerate curve (i.e., a curve not contained in any
hyperplane of the projective n-space P") of degree d’
in P”. Then the genus of C’ satisfies the inequality

g(C) Emm—1)(n—1)/2 + me, where m :
=[@—-1)m—1)] ande: =W —1) —m
(n—1).

Under the hypothesis of Theorem 1, c¢:
= ¢ (D) = 0 by Clifford’s theorem. Since D is
base-point-free, we can define a map ¢ : C— P”
associated with D. ¢ (C) is non-degenerate by
construction. Let C’ be the normalization of
¢(C), v: C’'— ¢(C) the normalization map and
¢ : C— (C’ the induced map of ¢. Put d: = deg
D,n:=1(D)—1,¢9": =g(C’) and d’: = deg
@(C). Thenc=d—2nand n = ¢ + 2.

Claim. deg ¢ = 2.

1. if deg¢o = 3, then d' £ d/3 and n —d = n
—d/3 = (m—c¢)/3 > 0. The above lemma im-
plies g = 0 so C’ = P* Put Opn(N) : = v*0pn(1).
Since ¢ (C) is nondegenerate, v*: I'(P", 0 (1))
— I'(P', 0 (N)) is injective, so we get n < N.
Since 0 (D) = ¢*O(N),d = N deg ¢ = N deg
¢. Therefore 3 <dego=d/N=<d/n <3,
which is impossible.

2. If degop =1, then d'=d,g =g and m =
[@—1D/n—D]I=0[12+ (+1D/&n— DI

(@Ifn=c+ 3, thenm=2,¢6=c¢+ 1 and
g<n—1+2(c+1) (by Castelnuovo)
=2d—3n+1 (byc=d— 2n)
<d-—-2 (by 3n = d + 3).
This contradicts d < g — 1.

W) Ifn=c+ 2 then m=3,e=0 and ¢
<3m—1)=d—1, which also con-
flicts.

As a consequence we get deg ¢ = 2, so @ is

a double covering map. Therefore d'=d/2;
hence d and ¢ are even. Again using Castel-
nuovo’s lemma, we get ¢ < d” — n = ¢/2. Since
g—1=2d=c+2n=3c+4=6g" +4, Theorem
1 is proved. Q.E.D.

Proposition. In the above notation, let G be
the involution of C compatible with ¢. Then D is
mvariant under the action of o*.

Proof. If x in the support of D is not a
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branch point, then B,|D — x| = {o(x)} because
@ is a double covering, so o(x) lies in the sup-
port of D. Q.ED.

Theorem 2. Let C (resp. C’) be a curve of
genus g (resp. g’) and g = 49’ — 2 with a double
covering m: C— C’. Then there is an effective di-
visor D on C with ¢(D) = 2g’ for any even degree
with 229" — 2) < deg D < 2[(g — 1)/2].

Proof. Suppose the ramification divisor of 7
on P+ -+ + P,,_,,., on C and suppose 0 is
the involution of C which is compatible with .
Here the number of ramification points is calcu-
lated by the Hurwitz formula. Take z in the func-
tion field k(C) of C with 0*z = — 2z Multiplying
z by an element of 7*k(C’) if necessary, we may
assume that div(z) = Z297%*P p. — 7*Q where
Q is some divisor on C’.

Since g = 49’ — 2, we can take an effective
divisor Dy on C’ such that (g —1)/2 =2 d,: =
deg D, = 29" — 2. We set D : =n*D, and verify
that D satisfies the desired condition. Since o*
acts on I'(D), I'D) = I ® I'™" where I'" is
the eigenspace with eigenvalue # 1 respectively.
Take fin k(C’). Then

¥z € I o div(n*) + P, — 7*Q + %D, 2 0
&div(f) —Q+D, 20
(because the order of the pull-back of a
divisor on C’ at any point of C is even)
e fer,— Q.

But since deg(D, — Q) =d, — (g — 29" +
1)< (g—1)2—g+29g—1= (49’ — 3 —
9)/2 <0, dim(I""") = 0 so that I'(D) = I'". We
get I(D) =1(D,) =1—¢g +d, c(D) =2d,—
20 —g ' +dy +2=2g". QE.D.

Corollary. Let C be a non-hyperelliptic curve
of genus g =13 or g=11. Then C is 1-
hyperelliptic if and only if there is a divisor D with
degree g — 1 and I(D) = [(g — 1)/2].
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Proof. If there is a divisor D with deg D =
g—1 and I(D) = [(g—1)/2], then ¢(D) =2
or 3. Put D': =D —Fix (D ): then D’ is
base-point-free, ¢(D’) < 2 and I(D’) = I1(D) =
[(g—1)/2] = ¢(D’) + 3 because ¢(D) = 2 if g
= 11. By Theorem 1, ¢ (D’) =2 and C is
1-hyperelliptic since C is not hyperelliptic. Con-
versely, if C is 1-hyperelliptic then there is such
a divisor by Theorem 2.

Remark. We can also prove the following
statement in a way similar to the proof of the
above corollary. If g = 7, then C is hyperelliptic if
and only if there is a divisor D with degree g — 1
and I(D) = [(g + 1)/2].

This shows that the condition ‘2D ~ K./’ is not
necessary in Theorem 3.1 [3].
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