The third-order factorable core of polynomials over finite fields

By Javier GOMEZ-CALDERON

Department of Mathematics, The Pennsylvania State University, U. S. A.
(Communicated by Shokichi IyAnAGA, M. J. A., Jan. 12, 1998)

Abstract

Let \boldsymbol{F}_{q} denote the finite field of order q and characteristic p. For $f(x)$ in $\boldsymbol{F}_{q}[x]$, let $f^{*}(x, y)$ denote the substitution polynomial $f(x)-f(y)$. In this paper we show that if $f(x)=x^{d}+a_{d-2} x^{d-2}+a_{d-3} x^{d-3}+\cdots+a_{1} x+a_{0} \in F_{q}[x]\left(a_{d-2} a_{d-3} \neq 0\right)$ has degree d prime to q and $f^{*}(x, y)$ has at least one cubic irreducible factor, then $$
f(x)=G\left(x^{4}+\left(4 a_{d-2} / d\right) x^{2}+\left(4 a_{d-3} / d\right) x\right) \text { for some } G(x) \in \boldsymbol{F}_{q}[x]
$$ or $$
f(x)=H\left(\left(x^{3}+\left(3 a_{d-2} / d\right) x+3 a_{d-3} / d\right)^{r+1}\right) \text { for some } H(x) \in \boldsymbol{F}_{q}[x]
$$ where r denotes the number of irreducible cubic factors of $f^{*}(x, y)$ of the form $x^{3}-T y^{3}+$ $A x+B y+C$.

Let \boldsymbol{F}_{q} denote the finite field of order q and characteristic p. For $f(x)$ in $\boldsymbol{F}_{q}[x]$, let $f^{*}(x, y)$ denote the substitution polynomial $f(x)-f(y)$. The polynomial $f^{*}(x, y)$ has frequently been used in questions on the values set of $f(x)$, see for example Wan [8], Dickson [4], Hayes [7], and Gomez-Calderon and Madden [6]. Recently in [2] and [3], Cohen and in [1], Acosta and Gomez-Calderon studied the linear and quadratic factors of $f^{*}(x, y)$. In this paper we consider the irreducible cubic factors of $f^{*}(x, y)$. We show that if $f(x)=x^{d}+a_{d-2} x^{d-2}+a_{d-3} x^{d-3}+\cdots+a_{1} x$ $+a_{0} \in \boldsymbol{F}_{q}[x]\left(a_{d-2} a_{d-3} \neq 0\right)$ has degree d prime to q and $f^{*}(x, y)$ has at least one cubic irreducible factor, then

$$
f(x)=G\left(x^{4}+\left(4 a_{d-2} / d\right) x^{2}+\left(4 a_{d-3} / d\right) x\right)
$$ for some $G(x) \in \boldsymbol{F}_{q}[x]$ or

$$
f(x)=H\left(\left(x^{3}+\left(3 a_{d-2} / d\right) x+3 a_{d-3} / d\right)^{r+1}\right)
$$ for some $H(x) \in \boldsymbol{F}_{q}[x]$ where r denotes the number of irreducible cubic factors of $f^{*}(x, y)$ of the form $x^{3}-T y^{3}+A x+B y+C$.

Now we will give a series of lemmas from which our main result, Theorem 7, will follow. Proofs for Lemmas 1 and 2 can be found in [5].

Lemma 1. Let $f(x)=x^{d}+a_{d-1} x^{d-1}+\cdots$ $+a_{1} x+a_{0}$ denote a monic polynomial over \boldsymbol{F}_{q} of degree d prime to q. Let the irreducible factorization of $f *(x, y)=f(x)-f(y)$ be given by

$$
\begin{aligned}
f^{*}(x, y) & =\prod_{i=1}^{s} f_{i}(x, y) . \\
f_{i}(x, y) & =\sum_{j=0}^{n_{i}} g_{i j}(x, y)
\end{aligned}
$$

Let
be the homogeneous decomposition of $f_{i}(x, y)$ so that $n_{i}=\operatorname{deg}\left(f_{i}(x, y)\right)$ and $g_{i j}(x, y)$ is homogeneous of degree j. Assume $a_{d-1}=a_{d-2}=\cdots$ $=a_{d-r}=0$ for some $r \geq 1$. Then

$$
g_{i n_{i}-1}(x, y)=g_{i i_{i}-2}(x, y)=\cdots=g_{i R_{i}}(x, y)=0
$$

where

$$
R_{i}=\left\{\begin{array}{cc}
n_{i}-r & \text { if } n_{i} \geq r \\
0 & \text { if } n_{i}<r .
\end{array}\right.
$$

Lemma 2. Let $f(x)=x^{d^{i}}+a_{d-1} x^{d-1}+\cdots$ $+a_{1} x+a_{0}$ be a monic polynomial over \boldsymbol{F}_{q} of degree d prime to q. Let N be the number of homogeneous linear factors of $f^{*}(x, y)=f(x)$ $-f(y)$ over $\boldsymbol{F}_{q^{r}}$ for some $r \geq 1$. Then, $f(x)=$ $g\left(x^{N}\right)$ for some $g(x) \in \boldsymbol{F}_{q}[x]$.

Lemma 3. Let d denote a positive divisor of $q-1$. Then

$$
\frac{x^{d-r}-y^{d-r}}{x^{d}-y^{d}}=\sum_{i=0}^{d-1} \frac{\mu^{-i(r-1)}-\mu^{i}}{d y^{r-1}\left(x-\mu^{i} y\right)}
$$

where μ denotes a d-th primitive root of unity in \boldsymbol{F}_{q}.

Proof. Considering the expressions as rational functions in x over the rational function field $\boldsymbol{F}_{q}(y)$ we obtain

$$
\frac{x^{d-r}-y^{d-r}}{x^{d}-y^{d}}=\sum_{i=0}^{d-1} \frac{A_{i}}{x-\mu^{i} y},
$$

for some $A_{0}, A_{1}, \ldots, A_{d-1}$ in $\boldsymbol{F}_{q}(y)$. Hence,

$$
\begin{gathered}
x^{d-r}-y^{d-r}=\sum_{i=0}^{d-1} \Pi_{j \neq i}\left(x-\mu^{i} y\right) A_{i}, \\
\left(\mu^{i} y\right)^{d-r}-y^{d-r}=\prod_{j \neq i}\left(\mu^{i} y-\mu^{j} y\right) A_{i},
\end{gathered}
$$

and consequently

$$
\begin{gathered}
\left(\mu^{-i r}-1\right) y^{d-r}=d \mu^{i(d-1)} y^{d-1} A_{i} \\
\mu^{-i(r-1)}-\mu^{i}=d y^{r-1} A_{i}
\end{gathered}
$$

for all $0 \leq i \leq d-1$. This completes the proof of the Lemma.

Our next Lemma provides a list of basic identities that will be needed later.

Lemma 4. Working formally, if $x^{3}-P x^{2}$ $+Q x-W=(x-a)(x-b)(x-c)$, then
(1) $a+b+c=P$,
(2) $a b+b c+a c=Q$,
(3) $a b c=W$,
(4) $a^{2}+b^{2}+c^{2}=P^{2}-2 Q$,
(5) $a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}=Q^{2}-2 P W$,
(6) $a^{3} b^{3}+a^{3} c^{3}+b^{3} c^{3}=Q^{3}-3 P Q W+3 W^{2}$.

Lemma 5. Let $f(x)=x^{d}+a_{d-1} x^{d-1}+\cdots$ $+a_{1} x+a_{0}$ be a monic polynomial with coefficients in \boldsymbol{F}_{q}. Assume that $f^{*}(x, y)$ has a factor of the form $g(x)-c g(y)$ for some $g(x) \in$ $\boldsymbol{F}_{q}[x]$ and $0 \neq c \in \boldsymbol{F}_{q}$. Then, $f(x)=G(g(x))$ for some $G(x) \in \boldsymbol{F}_{q}[x]$.

Proof. Let $e=\operatorname{deg}(g(x))>0, D=[d / e]$ and

$$
f(x)=\sum_{i=0}^{D} b_{i}(x) g^{i}(x)
$$

for some $b_{i}(x) \in \boldsymbol{F}_{q}[x]$ with $\operatorname{deg}\left(b_{i}(x)\right)<e$ for all i. Thus,

$$
\begin{aligned}
& 0 \equiv f^{*}(x, y) \quad(\bmod (g(x)-c g(y))) \\
& \equiv \sum_{i=0}^{D}\left(b_{i}(x) g^{i}(x)-b_{i}(y) g^{i}(y)\right) \\
& \equiv \sum_{i=0}^{D}\left(b_{i}(x) c^{i}-b_{i}(y)\right) g^{i}(y) \\
&(\bmod (g(x)-c g(y)))
\end{aligned}
$$

and consequently

$$
\begin{aligned}
\sum_{i=0}^{D} b_{i}(x)(c g(y))^{i}- & \sum_{i=0}^{D} b_{i}(y) g^{i}(y) \\
& =(g(x)-c g(y)) h(x, y)
\end{aligned}
$$

for some $h(x, y) \in \boldsymbol{F}_{q}[x, y]$. Further, since the x-degree of $\sum_{i=0}^{D} b_{i}(x)(c g(y))^{i}$ is less than e and $\operatorname{deg}(g(x))=e$, then $h(x, y)=0$. So,

$$
\sum_{i=0}^{D} b_{i}(x)(c g(y))^{i}=\sum_{i=0}^{D} b_{i}(y) g(y)^{i} \in \boldsymbol{F}_{q}(x)[y]
$$

and $b_{i}(x) c^{i}=b_{i}(y)=b_{i} \in \boldsymbol{F}_{q}$ for all $i, 0 \leq i$ $\leq D$. Therefore, $e \mid d$ and $f(x)=G(g(x))$ where $G(x)=\sum_{i=0}^{D} b_{i} x^{i} \in \boldsymbol{F}_{q}[x]$.

Lemma 6. Let $f(x)=x^{d}+a_{d-1} x^{d-1}+\cdots$ $+a_{1} x+a_{0}$ denote a monic polynomial over \boldsymbol{F}_{q}
of degree d prime to q. Assume $a_{d-1}=0$. Assume $x^{3}-R x^{2} y+S x y^{2}-T y^{3}+A x+B y+C$ is a cubic irreducible factor of $f^{*}(x, y)$. Then
(i) If $a_{d-2} \neq 0$, then $T R=S, d A T=(3 T-R S$ $+2 S T) a_{d-2} \quad$ and $\quad d B T=\left(S^{2}-2 R T-\right.$ $\left.3 T^{2}\right) a_{d-2}$.
(ii) If $a_{d-3} \neq 0$, then $T^{2} R=S^{2}-2 R T, R S^{2}-$ $2 T R^{2}=T S+2 S T^{2}$ and $d C T^{2}=\left(S^{3}-3 T R S+3 T^{2}-3 T^{3}\right) a_{d-3}$.
(iii) If $R S a_{d-2} a_{d-3} \neq 0$, then $T=-1$.

Proof. Let the prime factorization of $f^{*}(x$, $y)=f(x)-f(y)$ be given by

$$
f^{*}(x, y)=\prod_{i=1}^{s} f_{i}(x, y)
$$

where $f_{1}(x, y)=x^{3}-R x^{2} y+S x y^{2}-T y^{3}+$ $A x+B y+C$. Write

$$
x^{3}-R x^{2} y+S x y^{2}-T y^{3}=\left(x-w_{1} y\right)\left(x-w_{2} y\right)\left(x-w_{3} y\right)
$$

for some d-th roots of unity w_{1}, w_{2}, and w_{3}. So, with notation as in Lemma 1,

$$
\begin{array}{r}
a_{d-2}\left(x^{d-2}-y^{d-2}\right)=(A x+B y) \prod_{i=2}^{s} g_{i n_{i}}(x, y) \\
+\sum_{j=2}^{s}\left(g_{i n_{j}-2}(x, y) \prod_{\substack{i=1 \\
i \neq j}}^{s} g_{i n_{i}}(x, y)\right)
\end{array}
$$

and

$$
\begin{aligned}
a_{d-2}\left(x^{d-3}-\right. & \left.y^{d-3}\right)=C \prod_{i=2}^{s} g_{i n_{i}}(x, y) \\
& +\sum_{j=2}^{s}\left(g_{i n_{j}-3}(x, y) \prod_{\substack{i=1 \\
i \neq j}}^{s} g_{i n_{i}}(x, y)\right)
\end{aligned}
$$

Thus,
$a_{d-2} \frac{x^{d-2}-y^{d-2}}{x^{d}-y^{d}}=\frac{A x+B y}{g_{13}(x, y)}+\sum_{j=2}^{s} \frac{g_{j n_{j}-2}(x, y)}{g_{j n_{j}}(x, y)}$
and
$a_{d-3} \frac{x^{d-3}-y^{d-3}}{x^{d}-y^{d}}=\frac{C}{g_{13}(x, y)}+\sum_{j=2}^{s} \frac{g_{j n_{j}-2}(x, y)}{g_{j n_{j}}(x, y)}$.
Hence, combining with Lemma 3 ,

$$
\frac{a_{d-2}}{d y} \sum_{j=1}^{3} \frac{w_{j}^{-1}-w_{j}}{x-w_{j} y}=\frac{A x+B y}{g_{13}(x, y)}
$$

and

$$
\frac{a_{d-3}}{d y^{2}} \sum_{j=1}^{3} \frac{w_{j}^{-2}-w_{j}}{x-w_{j} y}=\frac{C}{g_{13}(x, y)}
$$

Therefore,
(1) $a_{d-2}\left(w_{1}^{-1}-w_{1}+w_{2}^{-1}-w_{2}+w_{3}^{-1}-w_{3}\right)=$ 0 ,
(2) $d A=-\left(\left(w_{1}^{-1}-w_{1}\right)\left(w_{2}+w_{3}\right)+\left(w_{2}^{-1}-\right.\right.$ $\left.\left.w_{2}\right)\left(w_{1}+w_{3}\right)+\left(w_{3}^{-1}-w_{3}\right)\left(w_{1}+w_{2}\right)\right) a_{d-2}$,
(3) $d B=\left(\left(w_{1}^{-1}-w_{1}\right) w_{2} w_{3}+\left(w_{2}^{-1}-w_{2}\right) w_{1} w_{3}\right.$ $\left.+\left(w_{3}^{-1}-w_{3}\right) w_{1} w_{2}\right) a_{-2}^{d-2}$,
(4) $a_{d-3}\left(w_{1}^{-2}-w_{1}+w_{2}^{-2}-w_{2}+w_{3}^{-2}-w_{3}\right)$ $=0$,
(5) $\quad a_{d-3}\left(\left(w_{1}{ }^{-2}-w_{1}\right)\left(w_{2}+w_{3}\right)+\left(w_{2}{ }^{-2}-w_{2}\right)\right.$ $\left.\left(w_{1}+w_{3}\right)+\left(w_{3}^{-2}-w_{3}\right)\left(w_{1}+w_{2}\right)\right)=0$,
and
(6) $d C=\left(\left(w_{1}^{-2}-w_{1}\right) w_{2} w_{3}+\left(w_{2}^{-2}-w_{2}\right) w_{1} w_{3}\right.$ $\left.+\left(w_{3}^{-2}-w_{3}\right) w_{1} w_{2}\right) a_{d-3}$.
Hence, combining with Lemma 4 ,
(1') $(S-R T) a_{d-2}=0$,
(2') $d A T=(2 S T-S R+3 T) a_{d-2}$,
(3) $d B T=\left(S^{2}-2 R T-3 T^{2}\right) a_{d-2}$,
(4) $\quad\left(S^{2}-2 R T-T^{2} R\right) a_{d-3}=0$,
(5) $\quad\left(R S^{2}-2 R^{2} T-S T-2 S T^{2}\right) a_{d-3}=0$,
and
(6) $\quad d C T^{2}=\left(S^{3}-3 R S T+3 T^{2}-3 T^{3}\right) a_{d-3}$.

Now, to prove (iii), assume that $R S a_{d-2} a_{d-3} \neq 0$.
So, $T R=S, T^{2} R=S^{2}-2 R T$ and consequently $S=T+2$. Therefore,
$R S^{2}-2 T R^{2}-T S-2 S T^{2}=0$,
$R(T+2) S-2 S R-T S-2 S T^{2}=0$,
$S\left(R T+2 R-2 R-T-2 T^{2}\right)=0$,
$S\left(S-T-2 T^{2}\right)=0$,
$T= \pm 1$.
One also notices that $T=1$ gives the contradicting statement that $x^{3}-R x^{2} y+S x y^{2}-T y^{3}=$ $(x-y)^{3}$ is a factor of $x^{d}-y^{d}$. Therefore, $T=$ -1 and the proof of the lemma is complete.

We are ready for our main result.
Theorem 7. Let $f(x)=x^{d}+a_{d-1} x^{d-1}+$ $\cdots+a_{1} x+a_{0}$ be a monic polynomial over \boldsymbol{F}_{q} of degree d prime to q. Assume $a_{d-1}=0$ and $a_{d-2} a_{d-3} \neq 0$. Let

$$
\begin{aligned}
& \prod_{i=1}^{m}\left(x^{3}-R_{i} x^{2} y+S_{i} x y^{2}-T_{i} y^{3}+A_{i} x+B_{i} y\right. \\
+ & \left.C_{i}\right) \prod_{i=m+1}^{m+r}\left(x^{3}-T_{i} y^{3}+A_{i} x+B_{i} y+C_{i}\right) \quad\left(R_{i} S_{i} \neq 0\right)
\end{aligned}
$$

denote the product of all the irreducible cubic factors of $f *(x, y)=f(x)-f(y)$. Then
(i) $m \leq 1$ and $f(x)=G\left(x^{4}+\left(4 a_{d-2} / d\right) x^{2}+\right.$ $\left.\left(4 a_{d-3} / d\right) x\right)$ for some $G(x) \in \boldsymbol{F}_{q}[x]$ if m $=1$.
(ii) $f(x)=H\left(\left(x^{3}+\left(3 a_{d-2} / d\right) x+3 a_{d-3} / d\right)^{r+1}\right)$ for some $H(x) \in \boldsymbol{F}_{q}[x]$.
Proof. By Lemma 6, $T_{i}=R_{i}=-S_{i}=-1$, $d A_{i}=d B_{i}=4 a_{d-2}$ and $d C_{i}=4 a_{d-3}$ for all $i, 1$ $\leq i \leq m$. Thus, $m \leq 1$ and if $m=1$, then $f(x)$ $-f(y)$ has a factor of the form

$$
\begin{aligned}
& \begin{aligned}
(x-y)\left(x^{3}+x^{2} y\right. & +x y^{2}+y^{3}+\left(4 a_{d-2} / d\right) x \\
& \left.+\left(4 a_{d-2} / d\right) y+4 a_{d-3} / d\right)
\end{aligned} \\
& =\left(x^{4}+\left(4 a_{d-2} / d\right) x^{2}+\left(4 a_{d-3} / d\right) x\right) \\
& \quad-\left(y^{4}+\left(4 a_{d-2} / d\right) y^{2}+\left(4 a_{d-3} / d\right) y\right) \\
& =h(x)-h(y) .
\end{aligned}
$$

Therefore, applying Lemma 5 , we have $f(x)=$ $G(h(x))$ for some $G(x) \in \boldsymbol{F}_{q}[x]$.

Similarly, $r \geq 1$ and Lemma 6 give factors of the form

$$
\begin{aligned}
& x^{3}-T_{i} y^{3}+A_{i} x+B_{i} y+C_{i}=\left(x^{3}+\left(3 a_{d-2} / d\right) x+\right. \\
& \left.\quad 3 a_{d-3} / d\right)-T_{i}\left(y^{3}+\left(3 a_{d-2} / d\right) y+3 a_{d-3} / d\right) \\
& =g(x)-T_{i} g(y)
\end{aligned}
$$

with $T_{i} \neq 1$ for all $m+1 \leq i \leq m+r$. So, again by Lemma $5, f(x)=G(g(x))$ for some $G(x) \in \boldsymbol{F}_{q}[x]$ and

$$
\begin{aligned}
f(x)-f(y) & =(g(x)-g(y)) \prod_{i=1}^{r}(g(x) \\
& \left.-T_{i} g(y)\right) \prod_{i=1}^{s} Q_{i}(g(x), g(y)) \\
& =(x-y)\left(x^{2}+x y+y^{2}+3 a_{d-2} / d\right) \\
& \prod_{i=1}^{r}\left(g(x)-T_{i} g(y)\right) \prod_{i=1}^{s} Q_{i}(g(x), g(y))
\end{aligned}
$$

for some polynomials $Q_{i}(x, y) \in \boldsymbol{F}_{q}[x, y], 1 \leq i$ $\leq s$. One also sees that if one of the factors $Q_{i}(g(x), g(y))$ is linear in $g(x)$ and $g(y)$, then it is reducible and of the form

$$
\begin{aligned}
Q_{i}(g(x), g(y)) & =g(x)+g(y)-6 a_{d-3} / d \\
& =(x+y)\left(x^{2}-x y+y^{2}+3 a_{d-2} / d\right) .
\end{aligned}
$$

Hence, applying Lemma $2, f(x)=w\left(x^{2}\right)$ for some $w(x) \in \boldsymbol{F}_{q}[x]$ and $a_{d-3}=0$. Therefore, $G(g$ $(x))-G(g(y))$ has a total of $r+1$ homogeneous linear factors in $g(x)$ and $g(y)$ and

$$
f(x)=H\left(\left(x^{3}+3 a_{d-2} x+3 a_{d-3} / d\right)^{r+1}\right)
$$

for some $H(x) \in \boldsymbol{F}_{q}[x]$.

References

[1] M. Acosta and J. Gomez-Calderon: The secondorder factorable core of polynomials over finite fields. Rocky Moutain J. of Math. (to appear).
[2] S. D. Cohen: The factorable core of polynomials over finite fields. J. Austral. Math. Soc., 49, 309-318 (1990).
[3] S. D. Cohen: Exceptional polynomials and reducibility of substitution polynomials. L'Ens. Math., 36, 53-65 (1990).
[4] L. E. Dickson: The analytic representation of substitution polynomials on a power of a prime number of letters with a discussion of the linear group. Ann. of Math., 11, 65-120; 161-183 (1897).
[5] J. Gomez-Calderon: A note on polynomials of the form $x^{d}+a_{e} x^{e}+\cdots+a_{1} x+a_{0}$ over finite fields. Proc. Japan Acad., 70A, 187-189 (1994).
[6] J. Gomez-Calderon and D. J. Madden: Polynomials with small value set over finite fields. J. Number Theory, 28, 167-188 (1988).
$[7]$ D. R. Hayes: A geometric approach to permutation polynomials over a finite field. Duke Math. J., 34,

293-305 (1967).
[8] D. Wan: On a conjecture of Carlitz. J. Austral. Math. Soc, ser. A, 43, 375-384 (1987).

