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On Bougerol and Dufresne’s identities for
exponential Brownian functionals

By Hiroyuki MATSUMOTO *) and Marc YOR* *)

(Communicated by Heisuke HIRONAKA, M. J. A., Dec. 14,1998)

1. Introduction. Let B- {Bt}ta o be a one-

dimensional standard Brownian motion starting
from 0. To {Xt(’) B + t}ta0, a Brownian
motion with constant drift , we associate the ex-
ponential additive functional

f0( .(B) exp (2 (Bs + s))ds, t >_ O.

This Wiener functional plays an important role
in a number of domains, mathema.ical finance

(Yor [13], Leblanc [111), diffusion processes in
random environments (Comtet-Monthus [4],
Comtet-Monthus-Yor [5], Kawazu-Tanaka [101),
probabilistic studies related to Laplacians on

hyperbolic spaces (Gruet [8], Ikeda-Matsumoto
[9]) and so on. The readers can find more related
topics and references in [16].

A(O)We denote A for--t The joint law of (At,

Bt) is fairly complicated (Yor [13]), although it is
quite tractable. But Bougerol’s identity ([3]),

(law)

(1.1) sinh(Bt) TAt for any fixed t > 0
for another Brownian motion {Ts}s>0 independent
of B, makes it easy to calculate the Mellin trans-
form of the probability law of A A simple proof
of (1.1), as a consequence of It6’s formula, has
been provided in Alili-Dufresne-Yor [1] who
have shown the identity in law of the processes

(exp(B) exp(- B)dT"s}_o and (sinh(

Another approach to the joint probability
law of (A, B)is found in Alili-Gruet [2] and
Ikeda-Matsumoto [9]. These authors have shown
independently the following formula. Let be a

function defined by

(1.2) (x, z) v/eX/(cosh z cosh x) "2, z a lxl.
Then it holds that
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1
(1.3) E[exp(- uAt/2) Bt x] 2V exp(- x/2t)

/727,a exp (- z/2t)]o(u x, z)) dz,

for every t> 0, where E[]] is the conditional
expectation with respect to the Wiener measure
and J0 is the Bessel function of the first kind of
order 0.

Moreover recall that J0(se) is the characteris-
tic function of a symmetrized arcsine random
variable 2Z--1, where Z is a usual arcsine

variable whose probability density is (r-
v/z(1 z))-, 0 < z < 1. Then, following [2], we

can show
(law)

(1.4) (r,, B,) ((2Z- )(B,, R + B), B)
as a consequence of (1.3), where R- {Rt} tao is

a two-dimensional Bessel process starting from 0
independent of B and Z. We will also see below
that (1.4) is equivalent to

(law)

(TA,, Bt) ((2Z-- 1)(Bt, Bt] + Lt), Bt)
for the local time L of B at 0. See Lemmas 1 and
2 in Section 3 for details.

The origin of the present note is the follow-
ing integral moments formula which has been
obtained by Ikeda-Matsumoto [9] by using a re-
sult in Yor [13]’for every positive integer n and
every x R, it holds that

1
(1.5) E[(At){Bt x] exp(- x/2t)

exp(nx)
bexp(- ba/2t)(cosh b coshx)’db.

Recall that, letting e be a standard exponen-
tial random variable whose density function is
exp(-- z), z 0, we have E[e"] [ and

exp a/0 exp c/2t) dc, b >
Then (1.5) is equivalent to
(1.6) E[(e-eA)"I B, a]

E[(cosh- cosh a)l > lall,
where e is assumed to be independent of B.
Although Carleman’s sufficient condition for the
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unique solvability of the moment problem is not
satisfied and we cannot conclude directly from
(1.6), we can show that

-a h(t)
(law)

(1.7) e eAt(..a
cosh(v/2-t) cosh a given > [al

holds for any t > 0 by using the above men-
tioned formulae (1.3) and (1.4), where ba

(t)
is a

Brownian bridge from 0 to a with length t.
Therefore the probability law of (eA (B), Bt) is

of a simple form.
The purpose of this note is to discuss some

identities related to (1.7). In particular, letting L
be the local time at 0 of the Brownian motion B,
we will show that
(1.8) (ee-BtAt B) Bt) (laZ)

(cosh<l B,I + Lt) cosh(Bt), Bt)
holds for any t > 0, which may help to relate the
exponential functional A to Pitman’s representa-
tion theorem of the three-dimensional Bessel pro-
cess as{I Btl + Lt} t_o (1.7) is a consequence of
(1.8) and the explicit form of the probability de-
nsity of (Bt, Lt) will play an important role in
the proof. In the final section we will show some
extensions of a recent interesting result of Duf-
resne [7] and its relation to our result.

2. Results. The following theorems are
the main results of this note. We use the same
notations as those in the Introduction.

Theorem 2.1. For any fixed t > O, it holds
that

(2.1) (ee-"A, (B), B,)
(law)

(cosh(I Bl / Lt) cosh(Bt), Bt).
Theorem 2.2. For any fixed t > O, the prob-

ability law of e-eAt(b:t>) coincides with the con-
ditional probability law of cosh (/2et)- cosh
a under the condition > lal.

We postpone proofs of these theorems to the
next section and give some consequences of them.

Corollary 2.3. Let {Zs}s_o be a complex Brow-
nian motion which is independent of B. Then, for
any t > O, it holds that

( exp(B- (Bt/2))dZs[ , Bt)
(law)

(cosh(lBt[ / Lt) cosh(Bt), Bt).
Proof We note that, if {Ps}s_ is a real-

valued process which is independent of {Zs} s_o,
then we have

21___1 f0 (law) f0psdZsl Pt) (e PsdS, lot)

for each t > 0, where e is independent of {Ps}.
The result now follows immediately from
Theorem 2.1. -I

Corollary 2.4. Let gt- sup {u < t;B,,
0} be the last visit to 0 up to time t. Then, for any t
> O, it holds that

(2.2) ([ exp(Bs)dZs[, gt)
(law)

(2sinh(IBtl/2), t-- gt)"
Proof. Under the condition gt- U, we have

(la__w) {_bl)(s/N)}o_su. Therefore we{Bs}o_s_o,
get by Theorem 2.2

(law) fo
u

cosh (v2eu) 1 e exp (2Bs) ds
(law) 1

-ffl exp(Bs)dZsl.
Therefore we obtain, without conditioning"

(law) v/2 gte
(2.3) (I exp(Bs)dZs], gt) (2sinh 2 gt).

On the other hand we have
(t)]Bt] v/t- gtmt

r (t)
where trus ]0_s_t is the Brownian meander de-
fined by

(t) 1 Bat+s(t-et)/tl.ms
V- gt

(t)-It is known (cf. [12]) that trus " is independent of
t--gt and ru is identical in law with ve.
Therefore, under the condition gt t, we get

Btl (la__.w)v/2 (t u)e.
(law)

Then, noting gt t gt, we obtain

(sinh(I Btl/2), t- gt)
(law) 2 (t gt) e

(sinh 2
t- gt)

(law) /2gte
(sinh 2

Combining this with (2.3), we get (2.2).
Corollary 2.5. For any t > O, it holds that

exp (bt)(s))dZsl
(law)

2 sinh(Lt(bt)/2).
The proof now follows easily by the above

mentioned results and is omitted.
3. Proofs of Theorems 2.1 and 2.2. In the

following we let B {Bs}s_ 0, 7"= {0"s}s > be
one-dimensional standard Brownian motions

starting from 0, R {Rs} s_0 a two-dimensional
Bessel process starting from 0, Z an arcsine ran-
dom variable and e a standard exponential ran-

dom variable which are defined on a probability
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space (oQ, P) and are independent of each other.
In order to give proofs of the theorems, we pre-
pare two lemmas. Although the first one is due to
Alili-Gruet [2], we give a proof for completeness.

Lemma 1. Let be the function defined by
(1.2). Then, for any t O, it holds that

(law)

(3.1) (r,, B,) ((2Z- 1)(Bt, Rt + B), Bt).
Proof. We have only to show that

(3.2) E[exp(-ur)l B a]
E[exp((- l u(2Z- 1)(B, v/R: + Bt))l B- a]

holds for any u R and a R, where E[I] is
the conditional expectation with respect to P.

For the left hand side of (3.2), we use (1.3).
Then we obtain

E[exp(-ur)l B a] E[exp(- uAt/2)l Bt a]

(3.3) --exp(a/2t) zexp(- z/2t))o(U((a, z))dz.

For the right hand side of (3.2), we recall
the integral representation of Jo and note

1 f_, exp(vc- 1 r)
J0()--_ v/_r dr

1 f exp(v/:--(2r 1))
7r (r r)

dr- E[exp(v 1 (2Z- 1)0].

Then we get
E[exp(v/- l u(2Z- 1)(Bt, R + B))I Bt- a]

Eo(U(a R2t / a))].
Since the probability density of R is t-lz exp(--
z/2t), we get

E[Jo(uqb(a, R2t -4- a))]

f0 7 exp ( z/2 t)Jo(u (a, ]a + z dz

7exp(--(z" a’)/2t)Jo(u(a, z))dz

and, combining with (3.3), the proof of (3.1) is

completed.
Lemma 2. Let L be the local time of B at O.

Then, for any t > 0, it holds that
(law)

(3.4) (Rt + B,, B,) ([ B,I + L,, B).
Proof. We have only to prove

,/ (law)

(3.5) Rt2+a la[ +L, ,(b (t))
for every a R, where Lt(b(at)) is the local time

at 0 of the Brownian bridge b;t)
from 0 to a with

length t. It is easy to show that the probability
density of the random variables on both hand
sides of (3.5) is given by

1 )
t exp(--(y a /2t), y> la].

Remark. (3.4) is a variant of Seshadri’s

identity (cf. [151).
Now we are in a position to give proofs of

Theorems 2.1 and 2.2.
Proof of Theorem 2.1. By Lemma 1, we

have
(law)

N2At, Bt)
(2(2Z- 1)2e"(cosh(v/R + B) cosh(Bt)), Bt),

where N is a standard normal random variable
independent of B, R, Z and e. Moreover, noting

that - (2Z-- 1) is again an arcsine variable

and 22e law)N2 we obtain
(law)

(eAt, Bt) (e’(cosh(/R + B) cosh(B)), B).
Therefore, by using Lemma 2, we get (2.1). -]

Proof of Theorem 2.2. By Theorem 2.1,we
have

-a (t) (law)

(t))e eAt(b) cosh([al +Lt(ba cosha
Therefore, noting that the conditional probability
law of lal + Lt under the condition B- a coin-

cides with that of /2t under 2vc2 > ]a[, we get

the assertion of Theorem 2.2.
4. Amplification of Dufresne’s identity. In

this final section, we give a relationship between
an identity recently obtained by Dufresne [7] and
Theorem 2.1. We give only the statements with-

out proofs. The results in this section will be
proved and developed elsewhere. We use the
same notations as those in the Introduction.

Dufresne’s recent result is the following"

Theorem 4.1 ([7]). For any fixed t > 0 and 12
O, it holds that

1 (law) 1 1
(4.1)

A(-) A() A(-)
a(-tt) ()

where ]t -", is a copy oj, independentofA
In fact, we can show that the identity in law

(4.1) holds for the stochastic processes involved,
by using stability properties of the laws of Bes-
sel processes, both by time reversal (at a last
passage time, for transient Bessel processes) and
by time inversion. Indeed, we can show the fol-
lowing"

Theorem 4.2. For every 12 > O, the two-
dimensional stochastic processes

A(-U)/A(-{ (exi-) (1 ’t ), e-x‘ )) }t :> 0 and

(v)( (e -x;"’, e -x’", (1 + A /Aoo )) } t_o
are identical in low.

Theorem 4.3. (i) For every I2 > O, the two-
dimensional stochastic processes
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{ (e-Xi-,’ (-) -)A A }t_o and

( (e-X’’ AI, ZI-,A,/( fl- + A)) }t t 0

are identical in law.

(ii) The random variable A<2" is independent of the

stochastic process {e -x}-") -A, },0.
Note that (2A" )-a obeys the Gamma ()

distribution (Dufresne [6], Yor [14]) and, in par-
ticular, (2A)- is a standard exponential ran-
dom variable. Therefore, by using Cameron-Mar-
tin’s Theorem, we can show by Theorem 2.1 that

(2 cosh(’t + Xt’l e

)/A-) eX’)<aw) (e_X?> (1 +At
holds for any > 0 where L1)

is the local time
of X/ at 0.

Combining this with Theorem 4.2, we obtain

the following:
Theorem 4.4. For any fixed t > O, the law of

( cosh t1 + IX/ e’, e’ sti
and it is also the common law of the following pairs

of random variables
/A<->) eX1’

(e -x?, (1 + A and

-xF1, eX-> <-)/A<->(e (1 A, ).
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