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1. The S-T set for a group. In [1], we in-
troduced a “Shafarevich-Tate set” II, (g, G) for
any g-group G and a family H of subgroups of a
group g:

(1.1) my(g, 6) = N,Kerr, h € H,

where 7, is the restriction map: H (g, G) —
H (h, G) of 1-cohomology sets (with origin). In
this paper, we consider exclusively the case
where g = G, acting on itself as inner auto-
morphisms, and H = the family of all cyclic sub-
groups of G. Hence we have a right to set simply
(1.2) I (G) = (G, G).

Extending the usage of language in Galois coho-
mology, we call III(G) in (1.2) the S-T set of G.
Furthermore G will be said to enjoy the Hasse
principle, if HI(G) = 1. It is easy to verify this
for abelian groups, dihedral groups and the qua-
ternion group.

2. Results.

the following
(2.1) Theorem. Let G be either PSL, (Z) or
PSL,(Fy), p being any prime. Then G enjoys the
Hasse principle.
(2.2) Corollary. In view of the well-known iso-
morphisms PSL, (F,) = S,, PSL, (F,) = A, and
PSL,(F,) = A, three groups S;, A, and A; enjoy
the Hasse principle.

Before proving (2.1), let us gather some
basic facts on G = PSL, (A) where A =Z or
F, 1f M e SL,(A), we often use the same sym-
bol M to denote its image in the group G =
PSL,(A) =SL,(A)/{£1}. Let S, T and U
be elements of G defined by
(2.1)

0 —1 11 0 —1
S_<1 0 )’T_<o 1)”“"(1 1 )
One has:

(2.2) U=ST, S*=1,U=1,

(2.3) G is generated by Sand T: G = <S, T).

(2.4) G is generated by Sand U: G = (S, U).
3. Proof of (2.1). Case 1. A # F, We use

(2.3). Let [ f] be an element of II(G). On replac-

In this paper, we shall prove

ing the cocycle f by one equivalent to it, we may
assume that
(3.1) f(S)=1,AT)=M"M",

M"T = TMT™, for some M € G.
From (2.2) it follows that
1 =f(U%) = AU AU U = (AU)U)’

B2~ SAmT) = (SM™M'T)* =
(SM™'TM)®.
Now set
_(a b
(3.3) M_<c d)eG_

Then, (3.2) is equivalent to

s (o) =20 0)

Furthermore, set
(3.5) =+ d’.
Then, (3.2), (3.4) amount to the following relation
2 2_ _ 2 _ 2_
(3.6) ( c't tzc (cd2 21)(t 21)) - ((1) (1))
(d+DE-1) d't—t—d

We find also that
- —1—cd+d*
(3.7 AD =M T = <1+Czd 1—cd f )
—c l—cd+c

Now, to prove (2.1) in Case 1 amounts to

find an X € G so that
X'x°=1

(3.8) {X_IXT = AT).

Since ¢d # 1 or ¢d # — 1 in this case, we

see from (3.6) that t= £ 1. Put X = <d —c>

c d
if =1, and X=< d ;) if = — 1. In view

of (3.5), (3.7), one verifies immediately that X
satisfies (3.8).

Case 2. A = F,  We use (2.4). Let [ f] be an
element of I (G). On replacing the cocycle f by
one equivalent to it, we may assume that
(3.9) fS)=1,fWU)=M"M’, M"=UMU"",
for some M € G.

In this case, we have

(310) 6={U',U'S,0< i< 2} with SU=U’S.
If M= U’ then f(U) =1 and so f~ 1.If M =
U'S, then () = SUT'UU'SU™ = SUSU ™" =
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U?SSU™" = U. Now we see at once that X = S References
is a solution to 18 [1] (a) T. Ono: A note on Shafarevich-Tate sets of fi-
X X' =1 nite groups. Proc. Japan Acad., 74A, 77-79
(3.11) 1y U _ _
X X —f(U) =U. (1998); (b) T. Ono: On Shafarevich-Tate sets.

Q. E. D. Proc. The 7th MS] Int. Res. Inst. Class Field
Theory-its centenary and prospect (to appear).



