On a family of quadratic fields whose class numbers are divisible by five

By Masahiko SASE
Deparment of Mathematics, Faculty of Science, Gakushuin University, 1-5-1
Mejiro, Toshima-ku, Tokyo 171-8588
(Communicated by Shokichi IYANAGA, M. J. A., Sept. 14, 1998)

Abstract

In this paper, we construct a family of quadratic fields whose class numbers are divisible by five. We obtain this result by extending the method of Kishi and Miyake [1] and using a family of quintics introduced by Kondo [2].

Notation. Throughout this paper, we shall use the following notation. $\boldsymbol{Z}, \boldsymbol{Q}$ will be used in the usual sense. For a rational prime p and $a \in$ $\boldsymbol{Z}, a \neq 0, \nu_{p}(a)$ will mean the greatest exponent m such that $P^{m} \mid a$. We shall consider various number fields, i.e. finite extensions of \boldsymbol{Q}, k, K, L, F, \ldots If \mathfrak{p} is a prime ideal and \mathfrak{a} an integral ideal $\neq 0$ in a number field, $\nu_{p}(\mathfrak{a})$ will mean the greatest exponent m such that $\mathfrak{p}^{m} \mid \mathfrak{a}$. If \mathfrak{p} is a prime ideal dividing $\mathrm{p}, \boldsymbol{e}_{\mathfrak{p} / \mathrm{p}}$ will mean the ramification index of \mathfrak{p}. For $f(x) \in Z[x], f^{(j)}(x)$ will mean the j th derivative of $f(x) . C_{n}$ will mean the cyclic group with order $n ; D_{n}$ the dihedral group with order $2 n$. h_{k} will mean the class number of a number field k. If K is a Galois extension of $k, G(K / k)$ will mean the Galois group for K / k.

1. Ramification of primes. Let q be an odd prime and $f(x)$ be an irreducible polynomial of degree q in $\boldsymbol{Q}[x]$. Let θ be a root of $f(x)$ and F $=\boldsymbol{Q}(\theta)$. We denote by L the minimal splitting field of $f(x)$ over \boldsymbol{Q}. We shall first prove:

Proposition 1. Suppose $[L: Q] \leq 2 q$ and that no prime number is totally ramified in F. Then $G(L / \boldsymbol{Q})$ is isomorphic to D_{q} and L is an unramified cyclic extension of degree q over the quadratic field k contained in L which is unique.

Proof. Since $[L: \boldsymbol{Q}] \leq 2 q$ and $q \mid[L: \boldsymbol{Q}]$, $G(L / Q)$ should be C_{q} or D_{q}. But C_{q} is excluded because of our assumption on the ramification in F / \boldsymbol{Q}. Thus $G(L / \boldsymbol{Q}) \cong D_{q}$ and there is a unique k such that $L \supset k \supset \boldsymbol{Q},[k: Q]=2$ and $[L: k]$ $=q$. Next, we have to prove that L / k is unramified. Suppose a prime ideal \mathfrak{B} of L is ramified in L / k. Its ramification index is q since L / k is a cyclic extension with degree q. Since $[L: F]=$

2, the prime $\mathfrak{p}=\mathfrak{P} \cap F$ is totaly ramified in F / \boldsymbol{Q}. This contradicts to the assumption. Since q is odd, the infinite primes of k are also unramified.

We next study the ramification of a prime in F. We write the polynomial $f(x)$ of the form

$$
f(x)=x^{q}+\sum_{j=0}^{q-1} a_{j} x^{j}, a_{j} \in \boldsymbol{Z}, \quad(*)
$$

and consider the following condition for the coefficients of $f(x)$ and a prime p :
$C(f, p)$: There is a number $j \in\{0,1, \ldots, q$ $-1\}$ such that $\nu_{p}\left(a_{j}\right)<q-j$.
The following lemma is an obvious consequence of [5, Proposition 6.2.1].

Lemma 1. Let p be a prime that is totally ramified in F. Then the factorization of $f(x)$ modulo p is given by

$$
f(x) \equiv(x+a)^{q} \bmod p
$$

with some $a \in \boldsymbol{Z}$.
For a proof of next lemma, we refer to Bauer [4] or Llorente and Nart [3].

Lemma 2. Let p be a prime. Assume that $f(0) \equiv 0 \bmod p$, and the condition $C(f, p)$ is satisfied. Then p is totally ramified in F if and only if the Newton polygon of $f(x)$ with respect to p has only one side.
We are now ready to mention a criterion for a prime to be totally ramified in F.

Proposition 2. Let p be a prime and $f(x)$ be an irreducible polynomial of degree q of the form (*) satisfing $C(f, p)$, and furthermore, assume that $a_{q-1}=0$. Then p is totally ramified in F if and only if the following conditions are satisfied.
(a) If $p \neq q$,

$$
0<\frac{\nu_{\phi}\left(a_{0}\right)}{q} \leq \frac{\nu_{p}\left(a_{j}\right)}{q-j} \text { for any } j \in\{1,2, \cdots, q-2\} .
$$

(b) If $p=q$, one of the following conditions (i), (ii) holds:

$$
\text { (i) } 0<\frac{\nu_{q}\left(a_{0}\right)}{q} \leq \frac{\nu_{q}\left(a_{j}\right)}{q-j} \text { for any } j \in\{1,2, \cdots, q-2\} \text {, }
$$

(ii) $\nu_{q}\left(a_{0}\right)=0, \nu_{q}\left(a_{j}\right)>0$ for any $j \in\{1,2, \cdots, q-2\}$,
$\frac{\nu_{q}\left(f\left(-a_{0}\right)\right)}{q} \leq \frac{\nu_{q}\left(f^{(j)}\left(-a_{0}\right)\right)}{q-j}$ for any $j \in\{1,2, \cdots, q-1\}$,
and $\nu_{q}\left(f^{(j)}\left(-a_{0}\right)\right)<q-j$ for some $j \in\{0,1, \ldots, q-1\}$.
Proof. Case I. $\nu_{p}\left(a_{0}\right)>0$. In this case, we can easily show by Lemma 2 that p is totally ramified if and only if p satisfies that $0<\nu_{p}\left(a_{0}\right)$ $/ q \leq \nu_{p}\left(a_{j}\right) /(q-j)$ for all j.

Case II. $\nu_{p}\left(a_{0}\right)=0$ and $p \neq q$. Then we have $f(x) \not \equiv(x+a)^{q} \bmod p$, for any $a \in \boldsymbol{Z}$, since $a_{q-1}=0$. So by Lemma $1, p$ is not totally ramified in F.

Case III. $\nu_{p}\left(a_{0}\right)=0$ and $p=q$. If $\nu_{q}\left(a_{j}\right)=$ 0 for some $j>0$, then it is shown in the same manner as in the Case II that q is not totally ramified in F. Now consider the case $\nu_{q}\left(a_{j}\right)>0$ for all $j>0$. Then $f(x) \equiv\left(x+a_{0}\right)^{q} \bmod q$. We use $f_{1}(x)=f\left(x-a_{0}\right)$ instead of $f(x)$;

$$
f_{1}(x)=x^{q}+\sum_{j=0}^{q-1} \frac{f^{(j)}\left(-a_{0}\right)}{j!} x^{j} \in \boldsymbol{Z}[x]
$$

We have $f_{1}(0) \equiv f\left(-a_{0}\right) \equiv 0 \bmod q$ and see that the condition $C\left(f_{1}, q\right)$ means $\nu_{q}\left(f^{(j)}\left(-a_{0}\right)\right)<q$ $-j$ for some $j, 0 \leq j \leq q-1$. So by Lemma 2 , under the condition $C\left(f_{1}, q\right), q$ is totally ramified or not in F, according as the inequality $\nu_{q}(f$ $\left.\left(-a_{0}\right)\right) / q \leq \nu_{q}\left(f^{(j)}\left(-a_{0}\right)\right) /(q-j)$ for all j holds or does not hold. Finally, assume that ν_{q} $\left(f^{(j)}\left(-a_{0}\right)\right) \geq q-j$ for all j. Then putting $f_{2}(x)$ $=f_{1}(q x) / q^{q} \in \boldsymbol{Z}[x]$, we see that the coefficient of $f_{2}(x)$ of degree $q-1$ is $-a_{0}$, so $f_{2}(x)$ $\not \equiv(x+a)^{q} \bmod q$, for any $a \in \boldsymbol{Z}$. Hence q is not totally ramified in F.

The proof is easily completed by the above argument.
2. A family of certain quintics. In this section, we consider a family of quintics introduced by Kondo [2]. Let A, B be indeterminates and put

$$
\begin{align*}
f(x ; A, B)= & x^{5}+(A-3) x^{4}+(B-A+3) x^{3} \\
& +\left(A^{2}-A-1-2 B\right) x^{2}+B x+A \tag{**}
\end{align*}
$$

The discriminant of $f(x ; A, B)$ is

$$
d(f)=A^{2} \Delta(A, B)^{2}
$$

where

$$
\begin{aligned}
\Delta(A, B)= & -4 B^{3}+\left(A^{2}-30 A+1\right) B^{2}+\left(24 A^{3}-34 A^{2}\right. \\
& -14 A) B
\end{aligned}
$$

$$
-4 A^{5}+4 A^{4}+40 A^{3}-91 A^{2}+4 A
$$

Kondo [2] showed the following result about this family:

Proposition 3 (Kondo [2]). Let A, B be indeterminates which are algebraically independent over Q and L be the minimal splitting field of $f(x ; A$, $B)$ over $\boldsymbol{Q}(A, B)$. Then, $G(L / \boldsymbol{Q}(A, B))$ is isomor. phic to D_{5} and the quadratic field over $\boldsymbol{Q}(A$, $B)$ contained in L is given by $\boldsymbol{Q}(A, B, \sqrt{\Delta(A, B)})$.
From this, $G(L / Q(A, B))$ is solvable (cf. Dummit [5]) and the discriminant of $f(x ; a, b)$ is a square in \boldsymbol{Q} for any $a, b \in \boldsymbol{Q}$. So we obtain the following:

Proposition 4. For $a, b \in \boldsymbol{Q}$, let L be the minimal splitting field of $f(x ; a, b)$ over \boldsymbol{Q}. If $f(x ; a, b)$ is irreducible over \boldsymbol{Q}, then $G(L / \boldsymbol{Q})$ is isomorphic to C_{5} or D_{5}.
3. Main theorem. Now we give a family of quadratic fields whose class numbers are divisible by five.

Theorem. Let $b, c \in \boldsymbol{Z}$ and put $g(y ; b$, c) $=y^{5}+S y^{3}+T y^{2}+U y+V$,
where

$$
\begin{aligned}
& S=-10 c^{2}-5 c+b \\
& T=20 c^{3}+40 c^{2}+25 c-3 b c-2 b+5 \\
& U=-(3 c+1)\left(5 c^{3}+20 c^{2}-b c+10 c-b\right) \\
& V=4 c^{5}+30 c^{4}-b c^{3}+25 c^{3}-2 b c^{2}+5 c^{2}-b c+5 c+3
\end{aligned}
$$

If $g(y ; b, c)$ is irreducible in \boldsymbol{Q} and (S, T, U) $=1$, then the class number of the quadratic field k $=\boldsymbol{Q}(\sqrt{m})$ is divisible by five, where

$$
\begin{aligned}
m= & -4 b^{3}+5\left(5 c^{2}-24 c-16\right) b^{2} \\
& +50\left(60 c^{3}+90 c^{2}+43 c+6\right) b \\
& -125\left(100 c^{5}+280 c^{4}+272 c^{3}\right. \\
& \left.+119 c^{2}+26 c+3\right)
\end{aligned}
$$

Proof. Putting $A=5 c+3, B=b$ in the polynomial (**), we obtain

$$
\begin{aligned}
f(x ; 5 c+3, b)= & x^{5}+5 c x^{4}+(b-5 c) x^{3} \\
& +\left(25 c^{2}+25 c+5-2 b\right) x^{2}+b x \\
& +5 c+3
\end{aligned}
$$

Note that $g(y ; b, c)=f(y-c ; 5 c+3, b)$ and that $\Delta(5 c+3, b)$ is equal to m. Let θ be a root of $g(y ; b, c)$ and $F=\boldsymbol{Q}(\theta)$. By Proposition 2 no prime number is totally ramified in F, for $g(y$; $b, c)$ is irreducible and $(S, T, U)=1$. By Propositions 1 and 4, the Galois group of $g(y ; b$, c) is isomorphic to D_{5}, and the quadratic field k $=\boldsymbol{Q}(\sqrt{m})$ has unramified cyclic extension of degree five.

Example 1 (THE CASE $c=0$). Let $b \in \boldsymbol{Z}$, $(b, 5)=1$, and $m=-4 b^{3}-80 b^{2}+300 b-$
375. Then the class number of $\boldsymbol{Q}(\sqrt{m})$ is divisible by five. Indeed, since $g(y ; b, 0)=y^{5}+b y^{3}$ $-(2 b-5) y^{2}+b y+3$ is irreducible in $\boldsymbol{Z} / 2 \boldsymbol{Z}$, g is irreducible in \boldsymbol{Q}.

Example 2 (THE CASE $c=-1$). Let $b \in$ $\boldsymbol{Z},(b, 5)=1$, and $m=-4 b^{3}+65 b^{2}-300 b$ -500. If $g(y ; b, 1)=y^{5}+(b-5) y^{3}+b y^{2}+$ $10 y+4$ is irreducible in \boldsymbol{Q}, then the class number of $\boldsymbol{Q}(\sqrt{m})$ is divisible by five.

Remark. These examples give explicitly a parametric family of quadratic fields k whose class numbers are divisible by five. We need no discussions about the units of k to establish this

Table for Example 1

$c=0, m=-4 b^{3}-80 b^{2}+300 b-375, k=\boldsymbol{Q}(\sqrt{m})$			
b	$m=s^{2} \cdot m^{\prime}$	m^{\prime}	h_{k}
9	-7071	$-1 \cdot 3 \cdot 2357$	70
8	-5143	$-1 \cdot 37 \cdot 139$	40
7	-3567	$-1 \cdot 3 \cdot 29 \cdot 41$	20
6	-2319	$-1 \cdot 3 \cdot 773$	30
4	$3^{2} \cdot(-79)$	-1.79	5
3	-303	$-1 \cdot 3 \cdot 101$	10
2	-127	$-1 \cdot 127$	5
1	-159	$-1 \cdot 3 \cdot 53$	10
-1	-751	-1.751	15
-2	-1263	$-1 \cdot 3 \cdot 421$	20
-3	-1887	$-1 \cdot 3 \cdot 17 \cdot 3$	20
-4	-2599	$-1 \cdot 23 \cdot 113$	30
-6	-4191	$-1 \cdot 3 \cdot 11 \cdot 127$	60
-7	-5023	-1.5023	25
-8	-5847	$-1 \cdot 3 \cdot 1949$	50
-9	-6639	$-1 \cdot 3 \cdot 2213$	90
-11	-8031	$-1 \cdot 3 \cdot 2677$	60
-12	-8583	$-1 \cdot 3 \cdot 2861$	50
-13	-9007	-1.9007	35
-14	$3^{2} \cdot(-1031)$	$-1 \cdot 1031$	35
-16	-9271	$-1 \cdot 73 \cdot 127$	60
-17	-8943	$-1 \cdot 3 \cdot 11 \cdot 271$	60
-18	-8367	$-1 \cdot 3 \cdot 2789$	30
-19	-7519	$-1 \cdot 73 \cdot 103$	50
-21	-4911	$-1 \cdot 3 \cdot 1637$	50
-22	-3103	$-1 \cdot 29 \cdot 107$	20
-23	$3^{2} \cdot(-103)$	$-1 \cdot 103$	5
-24	1641	$3 \cdot 547$	5
-26	8049	$3 \cdot 2683$	5
-27	11937	$3 \cdot 23 \cdot 173$	10
-28	16313	$11 \cdot 1483$	5
-29	21201	$3 \cdot 37 \cdot 191$	10

Table for Example 2

$c=0, m=-4 b^{3}+65 b^{2}-300 b-500, k=Q(\sqrt{m})$			
b	$m=s^{2} \cdot m^{\prime}$	m^{\prime}	h_{k}
19	-10171	$-1 \cdot 7 \cdot 1453$	20
18	$2^{2} \cdot(-2042)$	$-1 \cdot 2 \cdot 1021$	50
17	-6467	$-1 \cdot 29 \cdot 223$	20
16	$2^{2} \cdot(-1261)$	$-1 \cdot 13 \cdot 97$	20
14	$2^{2} \cdot(-734)$	$-1 \cdot 2 \cdot 367$	40
13	-2203	$-1 \cdot 2203$	5
12	$2^{2} \cdot(-413)$	$-1 \cdot 7 \cdot 59$	20
11	-1259	$-1 \cdot 1259$	15
9	-851	$-1 \cdot 23 \cdot 37$	10
8	$2^{2} \cdot(-197)$	$-1 \cdot 197$	10
7	-787	$-1 \cdot 787$	5
6	$2^{2} \cdot(-206)$	$-1 \cdot 2 \cdot 103$	20
4	$2^{2} \cdot(-229)$	$-1 \cdot 229$	10
3	-923	$-1 \cdot 13 \cdot 71$	10
2	$2^{2} \cdot(-218)$	$-1 \cdot 2 \cdot 109$	10
1	-739	$-1 \cdot 739$	5
-1	-131	$-1 \cdot 131$	5
-3	1093	1093	5
-4	$2^{2} \cdot 499$	499	5
-6	$2^{2} \cdot 1126$	$2 \cdot 563$	5
-7	6157	$47 \cdot 131$	5
-8	$2^{2} \cdot 2027$	2027	5
-9	10381	$7 \cdot 1483$	5
-11	15989	$59 \cdot 271$	5
-12	$2^{2} \cdot 4843$	$29 \cdot 167$	5
-13	23173	23173	10
-14	$2^{2} \cdot 6854$	$2 \cdot 23 \cdot 149$	5
-16	$2^{2} \cdot 9331$	$7 \cdot 31 \cdot 43$	20
-17	43037	43037	5
-18	$2^{2} \cdot 12322$	$2 \cdot 61 \cdot 101$	20
-19	56101	56101	5
-21	71509	$43 \cdot 1663$	5
-22	$2^{2} \cdot 20038$	$2 \cdot 43 \cdot 233$	10
-24	89453	$7 \cdot 13 \cdot 983$	10
	$2^{2} \cdot 24859$	24859	25
-10			
10			

fact.
Acknowledgements. The author wishes to thank Prof. Shokichi Iyanaga, M. J. A., and Prof. Shin Nakano for their warm encouragement.

References

[1] Y. Kishi and K. Miyake: Characterization of the quadratic fields whose class numbers are divisible by three (preprint).
[2] T. Kondo: On a family of sexic polynomials found by Brumer. Proc. of the 2 -nd Symp. on Number

Theory, Tsuda Coll., pp. 27-36 (1997).
[3] P. Llorente and E. Nart: Effective determination of the decomposition of the rational primes in a cubic field. Proc. Amer. Math. Soc., 87, 579-585 (1983).
[4] M. Bauer: Zur allgemeinen Theorie der algebraischen Grössen. J. Reine Angew. Math., 132, 21-32
(1907).
[5] D. S. Dummit: Solving solvable quintics. Math. Comp., 57, 387-401 (1991).
[6] H. Cohen: A Course in Computational Algebraic Number Theory. Springer-Verlag GTM 138 (1993).

