Gröbner deformations of regular holonomic systems

By Mutsumi Saito, ${ }^{*)}$ Bernd Sturmfels, ${ }^{* *)}$ and Nobuki Takayama* **)
(Communicated by Heisuke Hironaka, M. J. A., Sept. 14, 1998)

1. Torus-fixed ideals in the Weyl algebra. This is a research announcement of results in the first part of our monograph [15]. Let $D=\boldsymbol{C}\left\langle x_{1}\right.$, $\left.\ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}\right\rangle$ denote the Weyl algebra with complex coefficients. Thus D is the free associative C-algebra on $2 n$ generators modulo the relations $x_{i} x_{j}=x_{j} x_{i}, \partial_{i} \partial_{j}=\partial_{j} \partial_{i}, x_{i} \partial_{j}=\partial_{j} x_{i}$ $-\delta_{i j}$. Left ideals in D are called D-ideals. They represent systems of linear partial differential equations with polynomial coefficients. The torus $\left(\boldsymbol{C}^{*}\right)^{n}$ acts on the Weyl algebra by $\partial_{i} \mapsto t_{i} \partial_{i}$ and $x_{i} \mapsto t_{i}^{-1} x_{i}$ for $\left(t_{1}, \ldots, t_{n}\right) \in\left(\boldsymbol{C}^{*}\right)^{n}$. We abbreviate $\theta_{i}=x_{i} \partial_{i}$. The set of elements in D which are fixed by $\left(\boldsymbol{C}^{*}\right)^{n}$ equals the commutative polynomial subring $\boldsymbol{C}[\theta]=\boldsymbol{C}\left[\theta_{1}, \ldots, \theta_{n}\right]$.

Lemma 1.1. $A \quad D$-ideal J is torus-fixed if and only if J is generated by (finitely many) elements of the form $x^{a} \cdot p(\theta) \cdot \partial^{b}$ where $a, b \in N^{n}$ and $p(\theta) \in C[\theta]$.

Each $f \in D$ is written uniquely as a finite $\operatorname{sum} f=\sum_{a, b \in \mathbb{N}^{n}} c_{a b} x^{a} \partial^{b}$ with $c_{a b} \in \boldsymbol{C}$. Fix u, v $\in \boldsymbol{R}^{n}$ with $u+v \geq 0$. Then $\operatorname{in}_{(u, v)}(f) \in D$ is the subsum of all terms $c_{a b} x^{a} \partial^{b}$ for which $u \cdot a$ $+v \cdot b$ is maximal. For a D-ideal I we define the initial ideal $\operatorname{in}_{(u, v)}(I)$ to be the C-vector space spanned by $\left.\sin _{(u, v)}(f): f \in I\right\}$. If $u+v>0$ then $\operatorname{in}_{(u, v)}(I)$ is generally not a D-ideal; it is an ideal in the commutative polynomial ring $\operatorname{gr}(D)$ $=\boldsymbol{C}[x, \xi]=\boldsymbol{C}\left[x_{1}, \ldots, x_{n}, \xi_{1}, \ldots, \xi_{n}\right]$. Generators for the initial ideal can be computed by the Weyl algebra version of Buchberger's Gröbner basis algorithm; see e.g. [3] and [6] for early treatments and [13] for a precise introduction and recent applications.

[^0]If $u+v=0$ then the initial ideal is a D_{-} ideal. For $w \in \boldsymbol{R}^{n}$ we call $\operatorname{in}_{(-w, w)}(I)$ a Gröbner deformation of I. Specifically, if $w \in \boldsymbol{Z}^{n}$ then the D-ideal $\operatorname{in}_{(-w, w)}(I)$ is regarded as the limit of I under the one-parameter subgroup of $\left(C^{*}\right)^{n}$ defined by w.

Lemma 1.2. For generic $w \in \boldsymbol{R}^{n}$, the initial D-ideal $\operatorname{in}_{(-w, w)}(I)$ is torus-fixed.

Let $D^{ \pm}:=\boldsymbol{C}\left\langle x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}, \partial_{1}, \ldots, \partial_{n}\right\rangle$ be the ring of differential operators on $\left(\boldsymbol{C}^{*}\right)^{n}$. For a D-ideal I define the commutative polynomial ideal $\tilde{I}:=D^{ \pm} I \cap \boldsymbol{C}[\theta]$.

Proposition 1.3. If J is a torus-fixed D-ideal then $\tilde{J} \subset \boldsymbol{C}[\theta]$ is generated by $p(\theta-b) \cdot \Pi_{i=1}^{n} \Pi_{j=1}^{b_{i}}$ $\left(\theta_{i}+1-j\right)$ where $x^{a} \cdot p(\theta) \cdot \partial^{b}$ runs over a gener. ating set of J.
2. Holonomic rank under Gröbner deformations. Abbreviate $e:=(1,1, \ldots, 1) \in \boldsymbol{R}^{n}$. The ideal $\operatorname{in}_{(0, e)}(I)$ in $\boldsymbol{C}[x, \xi]$ is called the characteristic ideal of the D-ideal I. The Fundamental Theorem of Algebraic Analysis ([5],[12],[14]) states that each minimal prime of the characteristic ideal $\operatorname{in}_{(0, e)}(I)$ has dimension $\geq n$. If $\operatorname{in}_{(0, e)}(I)$ has dimension n then I is holonomic. In this case the following vector space dimension is finite and is called the holonomic rank of I :
(2.1) $\quad \operatorname{rank}(I)=\operatorname{dim}_{\mathrm{C}(x)}\left(\boldsymbol{C}(x)[\xi] / \boldsymbol{C}(x)[\xi] \cdot \mathrm{in}_{(0, e)}(I)\right)$.

Here $\boldsymbol{C}(x)=\boldsymbol{C}\left(x_{1}, \ldots, x_{n}\right)$. The holonomic rank equals the dimension of the \boldsymbol{C}-vector space of holomorphic solutions to I at any point outside the singular locus.

Theorem 2.1. Let I be a holonomic D-ideal and $w \in \boldsymbol{R}^{n}$. Then $\operatorname{in}_{(-w, w)}(I)$ is holonomic and (2.2) $\quad \operatorname{rank}\left(\operatorname{in}_{(-w, w)}(I)\right) \leq \operatorname{rank}(I)$.

Our proof of Theorem 2.1 is based on a walk in the Gröbner fan $G F(I)$ as defined in [1]. This fan decomposes the closed half space $\{u+$ $v \geq 0\}$ of $\boldsymbol{R}^{2 n}$ into finitely many convex polyhedral cones, one for each initial monomial ideal $\operatorname{in}_{(u, v)}(I) \subset \boldsymbol{C}[x, \xi]$.

Let \mathfrak{D} be the sheaf of algebraic differential operators on \boldsymbol{C}^{n}. A holonomic D-ideal I is called
regular holonomic if the \mathfrak{D}-module $\mathfrak{D} / \mathfrak{D} I$ is regular holonomic in the sense of [9] or [2, Def. 11.3 (ii), p. 302].

Theorem 2.2. Let I be a regular holonomic D-ideal and w any weight vector. Then
(2.3) $\quad \operatorname{rank}(I)=\operatorname{rank}\left(\mathrm{in}_{(-w, w)}(I)\right)$.

For the special case $w=e$ and assuming λ_{β} $-\lambda_{B^{\prime}} \notin \boldsymbol{Z}$ as in Theorem 4.2 below, the identity (2.3) is a consequence of [8, Theorem 1.1]. Our proof of Theorem 2.2 in general is independent of [8] and more elementary. It is based on Theorem 2.1 and the construction of the canonical series solutions to I in the next section.
3. Series solutions with logarithms. Let I be a regular holonomic D-ideal and $w \in \boldsymbol{R}^{n}$ generic. Then $J:=\operatorname{in}_{(-w, w)}(I)$ is torus-fixed. The artinian ideal $\tilde{J} \subset \boldsymbol{C}[\theta]$ is called the indicial ideal of I with respect to w. Let $V(J)=\left\{\beta_{1}, \ldots\right.$, $\left.\beta_{p}\right\} \subset \boldsymbol{C}^{n}$ denote the zero set of \tilde{J}. This set is finite since \tilde{J} is artinian. The vectors β_{i} are called the exponents of I with respect to w.

The Grobner cone of I containing w is the open convex polyhedral cone

$$
C_{w}(I)=\left\{w^{\prime} \in \boldsymbol{R}^{n}: \operatorname{in}_{\left(-w^{\prime}, w^{\prime}\right)}(I)=J\right\} .
$$

This is a maximal cone in the restriction of the Gröbner fan $G F(I)$ to $\{u+v=0\}$. Its polar dual $C_{w}(I)^{*}$ is closed and strongly convex. It consists of all $\nu \in \boldsymbol{R}^{n}$ such that in $\operatorname{low}_{\left(-w^{\prime}, w^{\prime}\right)}(I)=J$ implies $\nu \cdot w^{\prime} \geq 0$. Let $\boldsymbol{C}\left[\left[C_{w}(I)\right.\right.$ 数 $]$ be the ring of formal power series $f=\sum_{u} c_{u} x^{u}$ where $c_{u} \in \boldsymbol{C}$ and $u \in C_{w}(I) * \cap \boldsymbol{Z}^{n}$. Note that the initial form $\mathrm{in}_{w}(f):=\sum_{u: w \cdot u \text { minimal }} c_{u} x^{u} \quad$ is well-defined, since $u \cdot w>0$ for all $u \in C_{w}(I)^{*} \backslash\{0\}$.

Theorem 3.1. There are $\operatorname{rank}(I)$ many \boldsymbol{C}-linearly independent series in the ring

$$
R=C\left[\left[C_{w}(I) \text { 数 }\right]\right]\left[x^{\beta_{1}}, \ldots, x^{\beta_{p}}, \log \left(x_{1}\right), \ldots, \log \left(x_{n}\right)\right]
$$

which are annihilated by I and have a common do. main of convergence in \boldsymbol{C}^{n}.

The weight vector $w \in \boldsymbol{R}^{n}$ defines a partial order on the monomial basis of R :
(3.1) $x^{a} \log (x)^{b} \leq x^{c} \log (x)^{d}: \Leftrightarrow \operatorname{Re}(w \cdot a) \leq \operatorname{Re}(w \cdot c)$.

Here $\operatorname{Re}(w \cdot a)$ denotes the real part of the complex number $w \cdot a$. Let $g \in R$. The initial form $\mathrm{in}_{w}(g)$ is the finite sum of terms $c_{a b} x^{a} \log (x)^{b}$ in g minimal under (3.1).

Lemma 3.2. If g is annihilated by I then $\mathrm{in}_{w}(g)$ is annihilated by $J=\mathrm{in}_{(-w, w)}(I)$.

Let \prec_{w} be the refinement of the partial order (3.1) by the lexicographic order $<$ on the exponents $(a, b) \in \boldsymbol{C}^{n} \oplus \boldsymbol{N}^{n} \simeq \boldsymbol{R}^{2 n} \oplus \boldsymbol{N}^{n}$. Each
$g \in R$ has a unique initial monomial in $_{<_{w}}(g)=$ $x^{a} \log (x)^{b}$. Consider the following set of starting monomials:
$\operatorname{Start}_{<_{w}}(I):=\left\{\operatorname{in}_{<_{w}}(g): g \in R \backslash\{0\}\right.$ is annihilated by I.
We next construct the \boldsymbol{C}-basis of canonical series solutions to I with respect to \prec_{w}.

Theorem 3.3. The cardinality of Start ${ }_{<w}(I)$ equals rank (I). For each $x^{a} \log (x)^{b} \in \operatorname{Start}_{<w}(I)$ there is a unique element $g \in R \backslash\{0\}$ with the following properties:
(a) g is annihilated by I;
(b) in ${ }_{\alpha_{w}}(g)=x^{a} \log (x)^{b}$;
(c) No starting monomial other than $x^{a} \log (x)^{b}$ appears in the expansion of g.
4. Algorithmic Frobenius method. If a torus-fixed D-ideal J is holonomic, then \tilde{J} is artinian, and in this case,
(4.1) $\operatorname{rank}(J)=\operatorname{rank}(D \cdot \tilde{J})=\operatorname{dim}_{\mathrm{c}}(\boldsymbol{C}[\theta] / \tilde{J})$.

Solutions in R to J are determined from the primary decomposition

$$
\tilde{J}=\bigcap_{\beta \in V(J)} J_{\beta}(\theta-\beta)
$$

Here J_{β} is an artinian ideal primary to the maximal ideal $\left\langle\theta_{1}, \ldots, \theta_{n}\right\rangle$ in $\boldsymbol{C}[\theta]$. A \boldsymbol{C}-basis for its orthogonal complement J_{β}^{\perp} is derived from the term order \prec by Gröbner duality as in [10], [11].

Proposition 4.1. The canonical solutions to J are $x^{\beta} \cdot p\left(\log \left(x_{1}\right), \ldots, \log \left(x_{n}\right)\right)$ where $\beta \in V(J)$ and p is in the \boldsymbol{C}-basis of J_{β}^{\perp} dual to the reduced $\prec-G r o ̈ b n e r ~ b a s i s ~ o f ~ J_{\beta}$.

Let I be a regular holonomic D-ideal and w $\in \boldsymbol{R}^{n}$ generic. If $g \in R$ is a canonical solution of I then $\operatorname{in}_{(-w, w)}(g)$ is a canonical solution of $J=$ $\mathrm{in}_{(-w, w)}(I)$ and hence computed by Proposition 4.1. Our goal is to reconstruct g from $\mathrm{in}_{(-w, w)}(g)$. The following result is a consequence of our algorithmic Frobenius method [15] and a generalization of the method in [7]. The hypothesis λ_{β} $-\lambda_{\beta^{\prime}} \notin \boldsymbol{Z}$ in Theorem 4.2 is still unsatisfactory. We hope to be able to remove it in the final version of [15].

Let J be the torus fixed ideal in $D\left\langle t, \partial_{t}\right\rangle$ generated by $I_{0}=\mathrm{in}_{(-w, w)}(I)$ and $\theta_{t}-\sum_{i=1}^{n} w_{i} \theta_{i}$. Let $b_{0}\left(\theta_{t}\right)$ be the generator of $\tilde{J} \cap \boldsymbol{C}\left[\theta_{t}\right]$. Consider the primary decomposition $\tilde{J}=\cap_{\beta \in V\left(I_{0}\right)} J_{\left(\beta, \lambda_{\beta}\right)}$ $\left(\theta-\left(\beta, \lambda_{\beta}\right)\right)$ where $\lambda_{\beta}=\sum_{i=1}^{n} w_{i} \beta_{i}$. Since w is generic, we may assume that there exist one-toone correspondences between the points of $V(J)$, the points of $V\left(I_{0}\right)$, and the roots λ_{β} of $b_{0}(s)=0$.

We identify these points. Consider the \boldsymbol{C}-vector subspace $J_{\beta}^{*}=\left\{p\left(\partial_{\mu}, \partial_{\varepsilon}\right) \mid p \in J_{\left(\beta, \lambda_{\beta}\right)}^{\perp}\right\}$ of the Weyl algebra over $\mu_{1}, \ldots, \mu_{n}, \varepsilon$. We call it the space of Frobenius jets with respect to the exponent β. We extend the term order $<$ arbitrarily to include the new variable θ_{t}.

Theorem 4.2. Assume that the b-function $b_{0}(s)$ is factored as

$$
b_{0}(s)=\prod_{\beta \in V\left(I_{0}\right)}\left(s-\lambda_{\beta}\right)^{\mu_{\beta}}, \text { with } \lambda_{\beta}-\lambda_{\beta^{\prime}} \notin \boldsymbol{Z} \text { for } \beta \neq \beta^{\prime}
$$ Let $J_{\beta,<}^{*}$ be the \boldsymbol{C}-basis of the Frobenius jets J_{β}^{*} which is dual to the reduced \prec-Grobner basis of the primary ideal $J_{\left(\beta, \lambda_{\beta}\right)}$. For each exponent $\beta \in$ $V\left(I_{0}\right)$ one can construct a series $g_{\beta} \in$ $\boldsymbol{C}(\mu, \varepsilon)\left[\left[C_{w}(I)\right.\right.$ 数 $\left.]\right][[t]]$ such that the collection of derived series

$$
\lim _{t \rightarrow 1} \lim _{\mu, \varepsilon \rightarrow 0} x^{\beta} p\left(x^{\mu} t^{\varepsilon} g_{\beta}(\mu, \varepsilon ; x, t)\right),
$$

$$
\text { for all } \beta \in V\left(I_{0}\right) \text { and } p \in J_{\beta,<}^{*}
$$ equals the basis of canonical series solutions to I with respect to \prec_{w}.

References

[1] A. Assi, F. J. Castro-Jiménez, and M. Granger: The standard fan of a D-module. preprint (1998).
[2] A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, and F. Ehlers: Algebraic D-modules. Academic Press, Boston (1987).
[3] F. Castro: Thèse de 3ème cycle. Université de Paris 7 (1984).
[4] P. Deligne: Équations différentielles à points singuliers réguliers. Lecture Notes in Math., 163, Springer-Verlag (1970).
[5] O. Gabber: The integrability of the characteristic variety. American Journal of Mathematics, 103, 445-468 (1981).
[6] A. Galligo: Some algorithmic questions on ideals of differential operators. EUROCAL'85, Springer Lecture Notes in Computer Science, 204, 413421 (1985).
[7] S. Hosono, B. H. Lian, and S.-T. Yau: GKZ-generalized hypergeometric systems in mirror symmetry of Calabi-Yau hypersurfaces. Comm. Math. Phys., 182, 535-577 (1996).
[8] M. Kashiwara: Vanishing cycle sheaves and holonomic systems of differential equations. Algebraic Geometry (eds. M. Raynaud and T. Shioda). Springer Lecture Notes in Mathematics, 1016, 134142 (1982).
[9] M. Kashiwara and T. Kawai: On holonomic systems of microdifferential equations. III-Systems with regular singularities, Publ. RIMS. Kyoto Univ., 17, 813-979 (1981).
[10] T. Mora: Gröbner duality and multiple points in linearly general position. Proc. Amer. Math. Soc., 125, 1273-1282 (1997).
[11] B. Mourrain : Isolated points, duality and residues. Algorithms for algebra, Eindhoven (1996). J. Pure Appl. Algebra, 117/118, 469-493 (1997).
[12] T. Oaku: Computation of the characteristic variety and the singular locus of a system of differential equations with polynomial coefficients. Japan J. Industr. Appl. Math., 11, 485-497 (1994).
[13] T. Oaku and N. Takayama: Algorithms for D-modules-Restrictions, tensor product, localization and algebraic local cohomology groups. Math. AG/9805006 (1998).
[14] M. Sato, T. Kawai, and M. Kashiwara: Microfunctions and pseudodifferential equations. Springer Lecture Notes in Mathematics, 287 (1973).
[15] M. Saito, B. Sturmfels, and N. Takayama: Gröbner deformations of hypergeometric differential equations (in preparation).

[^0]: *) Department of Mathematics, Hokkaido University, Sapporo, 060-0810.

 * *) Department of Mathematics, University of California, Berkeley, CA 94720, U.S.A.; and Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502.
 ***) Department of Mathematics, Kobe University, Kobe, 657-8501.

