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Abstract:
Riesz basis for an Hilbert space.

1. Introduction. A Riesz basis for Hilbert
space is easily constructed by exponential maps
over a periodic set. This drives us to the ques-
tion how it is when a periodic set is replaces by
Delone set. Construction by exponential functions
will certainly work if a Delone set is very close
to a periodic set. We are concerned with the
problem how a Delone set can be different from
the periodic set. In fact, Kadec and Levinson
studied such a problem in the case of Lp[ -,
(p is a natural number) (see [6] pp. 118-131).

The purpose of the present note is to ex-
plore a little further in the cases of L[ — =,
7] and H'[ — &, ] (see our main theorem 5.3
and 5.4 below [6]).

2. Delone set and Voronoi cell.

Definition 2.1. An (R, 7)-Delone set A C
R" is defined by the next two conditions (see [5]
p. 28).

1) Discretness: There exists a positive real num-
ber 7 such that for every x, y € A, |x — y| =
27.

2) Relative density : There is a positive real num-
ber R such that every sphere of radius grea-
ter than R contains at least one point of A in
its interior.

Definition 2.2. Let A < R" be any Delone
set. The Voronoi cell at a point x € A is the set
of points of RY that lie at least as close to  as
to any other point of A:

Vie)={uc R z—yl <|ly—ul,yec A}

The Voronoi cell V(xr) is then the smallest
convex region about x (see [5] p. 42).

If A is a lattice, the Voronoi cells are con-
gruent.

Here we deal with a Delone set A including
0:0€ A,

3. The density of Delone set. We introduce
the notion of the density for the (R, 7)-Delone

In this paper we deal with the density of Delone set and apply it constructing

set. The density 4 of Delone set A centered at x

is defined by . #{A N B,()
(1) 4,(A) = lim =B
(m is the Lebesgue measure).

If (1) is well-defined, we say that A has the
density 4,(A) at x.

Here, we should notice that 4,(A) is actually
independent of x € R".

Lemma 3.1.
(2) 4,(A) = 4,(A),
for all x.

N Proof. Let A,(A) be defined for a fixed x €

R".

Take s > 0 such that s > |z|. Then

B,(s — |z|) € B,(s) € B,(s + |z]).

Here |x| =\/;12 +x°+ -+, for x= (z,,
Loy oy Zy).
Therefore
B,(s—|z) NAcCB,(s) NACB,(s+|z]) N A.
We obtain
#{(B,(s — |z|) n A}

#{B,(s) N A}

m(B,(s)) m(B,(s))
#{B,(s+ |x|) n A}
m(B,(s))
#{B,(s — |z]) N A} {s - |xl}” #{B,(s) N A}
m(B,(s — [z]) s m(B,(s))

#{(B,(s+ |z NnA Y\ s+ |zh¥
< ( m(By(s + [z]) ) { s }

(# is the number of elements).

We have (2) when s — o0, U

Corollary 3.2.

4,(A) = 4,(A),

for x # y.

We now define the density of A by

_ .. #{A N By(s)}

® AC4) = im= B o)
and call 4(A) the density of A.
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For a (R, »)-Delone set,
(minimal volume of Voronoi cells) < <
) _ 4(A)
(maximal volume of Voronoi cells).
Thus, 1 - 1
(0] {F} <4U) £0 {r_N}
If A is a lattice, Landau showed the follow-

ing results [1], [2], and [3].
Theorem 3.3.
az" =1.
Theorem 3.4. Let A be a regular N X N
real matrix. then

(4) AAZY)) = | det A7

1

That is, 775 is the volume of each Voronoi

X ACA)
cell in A.

4. Special Delone set. Definition 4.1. Let
A be a set including 0. We say A is an L-special
set (L < 1/4) if there exists a regular matrix A
such that

a) # (D) N A'(A) =1 for any n € Z".

b) A7N(A) € U, nD,(n).

Here D, ) ={x€R"||z,—n|<L;1<;j
< N} for n = (n,,..., ny).

A is called a lattice matrix and A’ = A(Z")
the periodic lattice associated with A.

Lemma 4.2. If A is an L-special set, it is a
Delone set. We freshly call A L-special Delone
set. A’ is not unique, but we see.

Lemma 4.3. Let A" be an L-special Delone
set. Then,

(5) AN = AW) = | det A7

A’ is the periodic lattice associated with A.

Proof. (5) is a consequence of Theorem 3.4
and the next relation:

# (A N By(s—2R)) < # (A" N By(s))

< #(A N By(s+ 2R))
valid for all s > 2R.

Then, we have (5). O

5. Delone set and Riesz basis. Recall that a
basis {7,} of a Hilbert space X is a Riesz basis if
there is a bounded invertible operator T and an
orthonormal basis {b,} in X such that 7, = Tb,
for all » ([6] p. 31).

Theorem 5.1 (Kadec’s 1/4 theorem). Let
{2,} satisfy sup|d,—n | <L <1/4. Then
{exp iA,t} is a Riesz basis for L[ — 7, 7] (see
[6] p. 42).

Lemma 5.2. Let {e,}) be an orthonormal
basis for a Hilbert space H. Suppose {f,} € H
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be “close enough” to {e,} in the sense that

(6) " ch(ek - fk)llz < ©y Z lck |2»
for some constant ¢; 0 < ¢ <1, and arbitrary
scalars {c,} (| - [, is the L[ — &, 7]-norm).
Then {f,} is a Riesz basis for L[ — ,
7] (see [6] p. 40).
Our first main result reads as follows.
Theorem 5.3. Let A be an L-special Delone

set associated with a periodic lattice A" =
AZ") on RY.
If A(A) satisfy a) or b):
1
(7) a) A £ —F—
@" n 1)?
b) A(A) > ———— and
@' -1’
1 1 2 — V144t
— a1 -1 —
L< 7 psin 7z ,

then {exp (i-x)},c, forms a Riesz basis for L
(W,(0)). Here W,(0) = (2m)" A™'V(0)) for the
Voronoi cell V(0) at 0 € Z", and A-z is the in-
ner product of A, x € RY.

Proof. We denote the unique element 2 € {A
(V(0) + Ak} N Aby A, k€ Z".

Since {exp (i1"*x)}, ., forms an orthonor-
mal basis for L (W, (0)), we have to show by
Lemma 5.2 that
kZZIN ¢, (exp (1A, x) — exp (iAk-x))
< 1 whenever = | ¢,]* < 1.

Since A™'2, € D, (k), we set by the triangle
inequality and Theorem 5.1,

(8)

L2(W4(0))

> c,(exp (i1,-x) — exp (iAk-x))
kezN

LEW4(0)

< |det AI'%

> ¢ (exp GA7'A,y) — exp (ik-y))
kezN LAV (0)
< | det AI'%{(Z — cos L + sin L)V — 1}.
(7) implies that the right hand of (8) is smaller
than 1. U]
Our second main result reads as follows:
Theorem 5.4. Let A be an L-special Delone
set associated with Z. If
(9) 2(1 — cos L + sin 7L)* + 8L* < 1,
exp tat

then {—2——},,E,1 is a Riesz basis for H'[ — =,
va" + 1

7l.

exp tkx |~
Proof. As [__p_} forms an ortho-
k=—o0

B4+ 17%=



No. 1]
normal basis for H'[ — 7, m], we have to show

by Lemma 5.2 that
exp 1a,x exp tkx
|5 (FREE - SKREE )
Jai+1 K +1
whenever 2 e, °<1 (| |y is the H'[ — =,

] -norm).
exp 1a,x exp tkx
|z o B -2

2

H1<1

2

Jai+1 JiE+1le
<2 Z—a:-/—gi’;(exp ia,x — exp tkx) j
1 1 2
+2|2 - k
C"[/;,fﬂ /k2+1}expzx2
+ 212 {—C:qk——] (exp 1a,x — exp tkx) 2
a, +1 2
¢ la, — k) . 2
+ 42 [—\/a—kz_ﬁ expzkx] )
+ 4| 2,k [ 1 — ] exp thx 2.
Jai+1  JE+1 2

Recall that if sup | @, — k| < L < 1/4,
I=¢, (exp ia,x — exp ikz)|}
< Q1 —cosnL+sinzl)* <1
for X |¢,|* < 1. Note also

c 2
5| & [zxiren,
va, +1
Ck@y

\/ak2 +1

2
Z| ’ <Xle <1,

(10) |I ck 2
> ——— (exp ta,x — exp ikx)
Ja,' +1 * 2
c.a 2
+ H > —%k_ (exp ia,x — exp ikx)
Vak2+ 1 * 2
2
< (1 — cos L + sin nL)ZZ—%—
a, +1
2 ak2|0k|2
+(1—coszL + sinwl)"'X ———
a, +1

< (1 — cos L + sin 7L)*Z |¢,|°
< (1 — cos L + sin L)%
On the other hand,
1 1 .
(11) "ch{ - - = }expzkx
Jai+1 VK +1
Ck(ak - k)
akz +1

2

2

2
exp tkx

+2| =

2
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2

+2”chk{

} exp tkx

1
Jai+1 K +1 2
JE+1— a2 +1 }2
Ja2 + 1/ +1
JEE+1 =gl +1 }2
Jal+ 1/ +1
+ 23 e, {u}z

JEE+ 1

< Zlef |

+ 23 |kck|2{

L CE+DE+1—Va2+1) )2
<X lc"| { 2 2 ]
JE+D@ +1)
a, — k ?
+ e ) | —
k { PER 1}
4K* + 3 2
< el k — a,)
¢ {(k2+1)(ak2+1) g }
(a, — k)°
<4Z e )P —E——
o a’+1 }
2
<arz ol
, @ t1
< 4L".
By using (9), (10), and (11),
exp ia,r exp mx \|?
2c —
H k(\/ak2+1 \/k2+1>Hl
< 21 — cos 7L + sin 7L)* + 8L?
< 1. O
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