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Abstract: In this paper we deal with the density of Delone set and apply it constructing
Riesz basis for an Hilbert space.

1. Introduction. A Riesz basis for Hilbert
space is easily constructed by exponential maps
over a periodic set. This drives us to the ques-
tion how it is when a periodic set is replaces by
Delone set. Construction by exponential functions
will certainly work if a Delone set is very close
to a periodic set. We are concerned with the
problem how a Delone set can be different from
the periodic set. In fact, Kadec and Levinson
studied such a problem in the case of
(p is a natural number) (see [6] pp. 118-131).

The purpose of the present note is to ex-
plore a little further in the cases of L2[-
7r] and HI[- r, 7] (see our main theorem 5.3
and 5.4 below [6]).

2. Delone set and Voronoi cell.
Definition 2.1. An (R, r)-Delone set A

RN
is defined by the next two conditions (see [5]

p. 28).
1) Discretness There exists a positive real num-

ber r such that for every x, y A, Ix-
2r.

2) Relative density: There is a positive real num-
ber R such that every sphere of radius grea-
ter than R contains at least one point of A in
its interior.
Definition 2.2. Let A RN

be any Delone
set. The Voronoi cell at a point x A is the set
of points of RN

that lie at least as close to x as
to any other point of A:
V(x) (u RNllx- Yl < lY- u[, y A}.
The Voronoi cell V(x) is then the smallest

convex region about x (see [5] p. 42).
If A is a lattice, the Voronoi cells are con-

gruent.
Here we deal with a Delone set A including

0:0A.
3. The density of Delone set. We introduce

the notion of the density for the (R, r)-Delone

set. The density A of Delone set A centered at x
is defined by # (A Bx(s)}
(1) Ax( A lim

s- m(Bx(S))
(m is the Lebesgue measure).

If (1) is well-defined, we say that A has the
density Ax A at x.

Here, we should notice that Ax(A) is actually
independent of x RN.

Lemma 3.1.
(2) Ax( A Ao( A
for all x.

Proof. Let Ax(A) be defined for a fixed x
RN.

Take s 0 such that s Ix [. Then
Bx(s- Ix I) Bo(s) c Bx(s 4- Ix I),

Here [x[ 124- x24- 4- xN for x: (x1,

X2,. .,XN).
Therefore

Bx(s- [xl) 3 A Bo(s) A Bx(s + [xl) A.
We obtain

#{Bx(s-[xl) A}
<_ #{Bo(s) Yl A}

m(Bo (s) rn(Bo (s)

# (Bx(s + Ix I) A}
rn(Bo(s))

# (Bx(s Ix l) A} s Ix ll #(Bo(s) A}
rn(Bo(s- Ixl)) [ s J m(Bo(s))

N

-< \ m(Bo(S / lll)) It
s

S

(# is the number of elements).
We have (2) when s--* oo. []
Corollary 3.2.

Ax(A ) A(A ),
forx y.

We now define the density of A by
# (A Y) Bo(s)}

(3) A (A) lim
s-oo rn (Bo (s)

and call A (A) the density of A.
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For a (R, r)-Delone set, 1
(minimal volume of Voronoi cells) < A (A) <-
(maximal volume of Voronoi cells).

Thus,

If A is a lattice, Landau showed the follow-
ing results [11, [21, and [:3].

Theorem 3.3.
A (ZN) 1.

Theorem 3.4. Let A be a regular N N
real matrix, then
(4) A (A (Zg)) det A[ -1.
That is, A(A) is the volume of each Voronoi
cell in A.

4. Special Delone set. Definition 4.1. Let
A be a set including 0. We say A is an L-special
set (L < 1/4) if there exists a regular matrix A
such that

a) # (DL (n) A-1 (A)) 1 for any n ZN.
b) A- ( A c tO nezNDL (n).

Here DL (n) x RuII x nl < L <_ j
<-- N} for n (nl,... nN).

A is called a lattice matrix and A’= A (Z)
the periodic lattice associated with A.

Lemma 4.2. If A is an L-special set, it is a
Delone set. We freshly call A L-special Delone
set. A’ is not unique, but we see.

Lemma 4.3. Let A be an L-special Delone
set. Then,
<5) A (A) A (A’) det A[ -.

A’ is the periodic lattice associated with A.
Proof (5) is a consequence of Theorem 3.4

and the next relation"
# (A ( Bo(s- 2R)) <_ # (A" (q Bo(s))

<_ # (A f Bo(s + 2R))
valid for all s > 2R.

Then, we have (5). [
5. Delone set and Riesz basis. Recall that a

basis {r} of a Hilbert space X is a Riesz basis if

there is a bounded invertible operator T and an
orthonormal basis {bn} in X such that rn Tbn
for all n ([6]p. 31).

Theorem 5.1 (Kadec’s 1/4 theorem). Let
{2} satisfy sup 12n- n < L < 1/4. Then
{exp i2nt} is a Riesz basis for Le[- r, r] (see
[61 p. 42).

Lemma 5.2. Let {e,} be an orthonormal
basis for a Hilbert space H. Suppose {fn} c H

be "close enough" to {en} in the sense that

for some constant /; 0 <_/ < 1, and arbitrary
scalars {on} dl-II, is the L2[ 7r, :r]-norm).

Then {fn} is a Riesz basis for L2[- r,
7r] (see [6] p. 40).

Our first main result reads as follows.
Theorem 5.3. Let A be an L-special Delone

set associated with a periodic lattice A’
A(ZN) on Ru.

If A(A) satisfy a) or b)"
1

(7) a)A(A)<
(2N 1) 2

1
b) A(A) > and

(2N 1)

1 1 -I 2 {1 + A (A)-L < sin4 r (

then {exp (i2" x)} 2A forms a Riesz basis for L
(Wa (0)). Here WA (0) (2:r) r A-V(O)) for the
Voronoi cell V(0) at 0 ZN, and 2"x is the in-
ner product of , x RN.

Proof We denote the unique element 2 {A
(V(0)) +Ak} gl A by 2k, k ZN.

Since {exp (i," x)} ,a, forms an orthonor-
mal basis for L2 (Wa (0)), we have to show by
Lemma 5.2 that

< 1 whenever Y] Ckl 1.
A-Since Dz(k), we set by the triangle

inequality and Theorem 5.1,

keZ L2(WA(O))

detAl-((2 cos L + sin L)- 1}.
(7) implies that the right hand of (8) is smaller
than 1.

Our second main result reads as follows:
Theorem 5.4. Let A be an L-special Delone

set associated with Z. If
(9) 2(1 cos L + sin L) a + 8La < 1,. e iat
then

t/aa +- 1=java is aRiesz basis for H[-- ,
exp ikx}= forms an ortho-Proof As
l//kaq 1 k=-=
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normal basis for Ha[- zr, zc], we have to show
by Lemma 5.2 that

IIE Ck (expiakx expikx )[[g <1/a + 1 v/k + 1

whenever ]]CEI <-- 1 (11" IIH1 is the HX[--,
] -norm).

][Zc{ expiax- expikx}]]

Na+c 1
(exp iax- exp ikx)N2

ca (exp iax- exp ikx+2
]a+l

+ [ +1

Recall that if sup a k L < 1/4,
IIc (exp iaz exp ikz

< (1--cosL+sinL)< 1
for levi < 1, Note also

cl < 1N ]a +1

(10)

(11)

Ckak

v/a +1

(exp iax exp ikx

(exp iakx exp ikx

<_ (1-- cos zcL + sin rL)E [cl
a +1

2

+(1-coszcL+sinzcL)2Z axlc[
a +1

<_ ( 1 cos rL + sin zcL)Z [c]
< ( 1 cos rrL + sin rrL).
On the other hand,

cg (ak k)

}1
exp ikx

v/k + 1

exp ikxl[

1 1

[ /k+l v/a+ 1 }<- ][c { v/ag2+lv/k2+ 1

+ 2 kcl [ va- + lv/k. +1

< 2 ick]2 {(2k2+ 1)(/k2+1 ?ak2+ 1) }2v/(k + 1)(ak + 1)

ak_ k }2
<_ Z levi [ 4k2 + 3

(k + li (a + 1)

_< 4E [ckl2 [ (ak k)2}-
ak +1

_< 4L Icl
ak +1

_< 4L2.
By using (9), (10), and (11),

( exp iaxx exp inx

< 2(1-cosrL+sinrL)+8L
<1.
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