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Abstract: In this article, we state some results on the range characterization for Radon
transforms on Grassmann manifolds and give the explicit inversion formulas.
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1. Introduction. Let us denote by iI the
real number field / or the complex number field
C. Let Gr(p, n;/)be the Grassmann manifold
of all p-dimensional subspaces in /n. Then,
the Radon transform R" C(Gr(q, n;/))--
Coo(Gr(p, n;)) is defined as follows.

Rf() "= f(r) d, if q(1.1) P,
alr

Rf() "= f(r) tiN, if p(1.2) q,

for a p-dimensional subspace Gr(p,
and for f C(Gr(q, n ;F)). Here in (1.1) or
in (1.2), dg denotes the normalized invariant me-

asure.
Let s := min{q, n- q) rank Gf(q,

and r := min{p, n --p} rank Gr(p, n;F). If
s < r( dim Gr(q, n < dim Gr(p, n ;F)),
the Radon transform R is no longer surjective.
On the other hand, it is known that R is injec-
rive if s N r. Thus, we arrive at the problems;
how to characterize the range of R and how to
reconstruct the inverse image of R. In fact, for
the first problem, Gonzalez [1] shows the exist-
ence of the range characterizing operator for R
and for the second problem, Grinberg [3] shows
the existence of the inversion formula for R.
However, explicit results for these two problems
are still unknown. Therefore, in this article, we
give the explicit form of the range characterizing
operator and the explicit inversion formula for
the Radon transform R.

The integral geometry on Grassmann mani-
folds and related subjects will be investigated in
our forthcoming paper [9], in which the results in
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this article will be proved.
2. Complex ease. In this section, we deal

with the case of complex Grassmann manifolds.
The special unitary group G "= SU(n)acts on

the complex Grassmann manifold Gr(p, n; C)
transitively. The stabilizer of the p-dimensional
subspace Cel ( ( Cep is Kp "= S(U(p)
U(n- p)). Then, Gr(p, n C) can be identified
with the compact symmetric space G/K.

First, we construct a certain kind of dif-
ferential operators on the complex Grassmann
manifold Gr(p, n; C), which are expressed in

terms of determinantal type of differential oper-
ators.

Let g and f denote the Lie algebras of G
and of Kp, respectively. Then,
g {X Mn(C) ;X 2r- X* O, tr X- 0},

0 X
Let g fp ( g)2 be the Cartan decomposition of
the symmetric space G/K, where ffJ is the
space of all the matrices X of the form

(21) X (0 --Z*)Z 0
Z (z) complex (n- p) x p matrix

(1 <_ iNn--p, 1 <_a<_p).
Let/= (i(1), i(2),..., i(d) 1 <_ i(1) < i(2) <

< i(d) <-n- p} and A {or(l), c(2),
a(d), ;1 <_ a(1) < a(2) < < or(d) -< p} be
two ordered sets.

For the submatrix Z of X in (2.1) and the
above two ordered sets I and A, we define d x d
matrix valued differential operators OZ(t,a and

OZ(I,A by

(2.2) OZ(I’A) 02iot iI,otA’
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Next, we define d-th order differential operators
L() (). COOana L(z,A) acting on (G) by
(2(3)I,A

(d)
L(z,a f(g) .= det Z(i,a)f(g exp X) Ix=o,

[(d)* )d(2 4)’.,A)f(g) "= (-- 1 det 2,A)/(g exp X) Ix--0,
for f C(G). Here X is a matrix of the form
(2.).

Finally. using L(d) r(d)*
(1.a) and--.(z.a), we define a

differential operator ’d of order 2d acting on

C (G) as follows.
d) (n,p) r(d), L(d)

Ic (1,2," ,n--p)
Ac (1,2,
# I= #A=d

a(n’P) "= 1(l<d< r) -0

Then, it turns out that the differential operator

a defined by (2.5) is left G-invariant and
)(n,P

right K-invariant. Therefore, -a is well de-
fined as an invariant differential operator on the
symmetric space G/K. Then, in the complex
case, our range theorem is stated as follows.

Theorem A (Range theorem-complex case-).
(I) We assume that s := rank G /Kq < r := rank
G/Kp.Then, the range Im R of the Radon trans-

(n,P)
form R is identical with the kernel of s+l, that

q )(n,P)is, Im R Ker + (H) Let P be an invariant

differential operator on Gr(p, n, C) of order 2s + 2
satisfying the two conditions. (a) Im R Ker P.
(b) The radial part of P, rad(P)is of the form
rad(P) (-- 1)s+12-2(s+l)Ss+ Ot’ Ot2r

+
lower order terms, where Sk denotes the k-th
elementary symmetric polynomial. Then P coincides

(fi (n ,p
with s+

In the above theorem, rad (P)is a Weyl
group invariant differential operator on the Weyl
chamber (exp(tlH + + trHr)K G/K;
0 < tr< ti 7r/2), where
v/- I(E+, + E,+) (For the details of the
theory of radial parts, see Helgason [5]).

It is well known that any highest weight of
the complex Grassmann manifold G/Kp is written
of the form (ll, ", Ir, 0," ", O, lr, ", /1)
Rn, where lj Z(1 <_j_< r) and l--> -->

Ir >-- O. We denote by V (n’p)(ll," "’, lr) the corres-
ponding irreducible eigenspace of the standard
Laplacian on G/K. Moreover, we define a
homogeneous symmetric polynomial Tm(t,’" ",

tN) of (tl,’’’, tN) by
(2.6) Tm(tl, tN) "= X t.l t.2 tam,

al O2<2 CrmN

To(t,..., 6) .= 1.
Then, in addition to Theorem A, we have the fol-
lowing eigenvalue formula.

Theorem B (Eigenvalue formula-complex
case-). The Schur constant of the invariant dif-
ferential operator ai(n’). on the irreducible eigenspace

V (n’) (l,’", r) is given by the formula
d

qn,) Iv(","(,1,...,t)= X (-- 1) a- Ta_k(aa,"’, ar)
k=O

Sk (X "- al, ", X r - ar)
.2

where X l(l + n + 1 2j) and a =j (n
+ 1)j + n.

The above invariant differential operators

a (1 <_ d <_ r) play an important role not
only in the range characterization but also in the
inversion formula. In fact, the inversion formula

q
for the Radon transform Rp is described in terms

fi (n,q)
of the operators - (1 <-- k <- s) on the source
manifold Gr(q, n, C). More precisely, we have

the following.
Theorem C (Inversion formula-complex case-).

We assume that s rank G /Kq <- r "= rank
G/K. Then the Radon transform R on the com-

pact complex Grassmann manifold G/Kq Gr(q,
n, C) is inverted by the formula

{ II
(c-l-k)!(n-c-k)’ }

S+IIXs+IP--ql k=0 (0 1)!(n c)!
CooRqR; I, on (G/Kq)

3. Real ease. In this section, we deal with
the case of real Grassmann manifolds. Therefore,
from now on, we denote by G and by K the spe-
cial orthogonal group SO(n) and its subgroup
S(O(p) x O(n- p)) respectively. Then the real
Grassmann manifold Gr(p, n ;R) is identified
with the compact symmetric space G/K
SO(n)/S(O(p) x O(n--p)) in the usual man-

ner. Similarly as in the complex case, we first

construct range-characterizing operators.
Let g and f denote the Lie algebras of G

and of Kp, respectively. Then
g= (X M,(R) ;X + tX O,},

0 X
e fl;X M(R), X M._(R)

Let fl f @ be the corresponding Cartan de-
composition. Then is the space of all the mat-
rices X of the form

(3.1) X (0 --ty)- g,
Y 0 /

Y= (y.)’real (n- p) x p matrix
(l <_i<_n--p,l <_a<_p).
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Let I= {i(1), i(2),.’’, i(d) ;1 <_ i(1)
< i(d) <- n- p} and A {a(1), a(2)," ",

a(d), ;1 <-c(1) < a(2) < < a(d) <-p} be
two ordered sets. (Here we assume that 1--< d
<_ rank G/Kp min{p, n -p}).

For the submatrix Y of X in (3.1) and the
above two ordered sets I and A, we define a d x
d matrix valued differential operator O Y(I,A) by

(3.2)

Next, we define a d-th order differential operator

(LA) acting on C (G) by
]1//" (d)(3 3)

for f C’(G). Here X is a matrix of the form
(3.1).

Finally, using (i,z>, we define a differential
( (n,P

operator - on C (G) as follows.

0 1
Case II: n 2r.
d(2r,r)

(3 5) - (-- 1)2- /r()(I,A)}
Ic(1 2,...,n-I,, ..,/
#I=#A=d

(1 N d N r- 1),
<r,r (__ 1) r2-rr ({1,2,. .,r}, {1,2,. .,r})

<r,r> := 10

For the same reason as in the complex case, we
(n,)see that the above operator e is well defined

as an invariant differential operator on the sym-
metric space G/K. Then, in the real case, our
range theorem is given by the following

Theorem D (Range theorem-real case-). (I)
We assume that s’= rankG/K< r’= rank
G/K. Then the range Im R of the Radon trans-

(n,)form is identical with the kernel of s+, that

’ (H) Moreover, we assumeis, Im R; Ker s+
that 2r < n. Let P be an invariant differential oper-
ator satisfying the same type conditions as (a) and

(n,)b) in Theorem A Then, P coincides wth s+
As is well known, if 2r < n, any highest

weight of the real Grassmann manifold G/K is

written of the form (2l,’’’, 21r, O,’’’, O)
R with lZ(1NjNr) and l2 2lr20.
Here m rank G [n/2]. We denote by
V ("’>(l, l,) the corresponding irreducible
eigenspace of the standard Laplacian on G/K.
Then the analogous eigenvalue formula holds in
the real case.

Case I: 2r < n.
(3 4) rn(’P) "= (-- 1)2-2 (/r() t2’d (I,A)-

Ic {1,2," ,n--p}
A {1,2,- ,p}
#I-- #A--d

(I <_d<_ r),

Theorem E (Eigenvalue formula-real case-).
We assume that 2r < n. The Schur constant of the

(b (n,P)
invariant differential operator *’d on the irreduci-

ble eigenspace V(n’)(/1," ", 1r) is given by the for-
mula

d
("’) Z (-- 1) e- Td_,(ae," ar)q} v(.,)(,...,p

k=O

S, (Z + al ", X r "- ar)

where %j l(l + n- 2) 1 .2 1
2 and a=-l 4

1
nJ + -i- n

However, in the case 2r- n, the uniqueness
of the range-characterizing operator such as
Theorem A (//) no longer holds. In fact, we have

Proposition F. If 2 r n and r< 2 (s + 1)
< 2r, there exists a one parameter family {;
R} of invariant differential operators on Gr(r, 2r;
R) such that Im Rr Ker r, and the radial part

of , rad(gr,) is of the form rad(gr,)

(-- 1)s+12-(s+’) Ss+l Ot’ Ot
+ lower order

terms, for a suitable coordinate system (tl," ", tr)
on a Weyl chamber.

Finally, we go into the inversion formula for
the real Grassmannian case.

Theorem G (Inversion formula-real case-).
We assume that s "= rank G /K <_ r "= rank
G/K and that lp- q is even. Then, the Radon

transform R on the compact real Grassmann mani-

fold G/Ko Gr(q, n, R)is inverted by the for-
mula

{ II
22*(c-2-k)!(n-a-k)’ }

s<.gs+l-ql =0 (a 2)!(n a) }’q)
a-s" even

RqR= I, on (c/g).
We remark that by letting q 1 in the

above theorem we obtain the Helgason’s inver-

sion formula

[2]

[31

[4]

References

F. Gonzalez: On the range of the Radon trans-

form on Grassmann manifolds. J. Funct. Anal. (to
appear).

E. L. Grinberg: On images of Radon transforms.
Duke Math. J., 52, 939-972 (1985).

E. L. Grinberg: Radon transforms on higher rank
Grassmannians. J. Diff. Geom., 24, 53-68 (1986).

S. Helgason: The Radon transform on Euclidean

spaces, two-point homogeneous spaces, and

Grassmann manifolds. Acta. Math., 113, 153-



92 T. KAKm [Vol. 73(A),

180 (1965).
5 S. Helgason: Groups and Geometric Analysis.

Academic Press, New York (1984). [10]
[6] S. Helgason: Geometric Analysis on Symmetric

Spaces. vol. 39, AMS. Mathematical Surveys and
Monographs, Providence (1994). [11]

7 T. Kakehi: Range characterization of Radon
transforms on complex projective spaces. J. Math.
Kyoto Univ., 32, 387-399 (1992).

[8] T. Kakehi: Range characterization of Radon [12]
transforms on S and P’R. J. Math. Kyoto Univ.,
33, 315-328 (1993).

9 T. Kakehi: Integral geometry on Grassmann

manifolds and calculus of invariant differential

operators (preprint).
T. Kakehi and C. Tsukamoto: Characterization of
images of Radon transforms. Advanced Studies in

Pure Mathematics, 22, 101-116 (1993).
T. Oshima: Generalized Capelli identities and
boundary value problems for GL(n). Structure of

Solutions of Differential Equations. Katata/Kyoto,
World Scientific, Singapore, pp. 307-335 (1996).

T. Tanisaki: Hypergeometric systems and Radon
transforms for Hermitian symmetric spaces (pre-
print).


