On Jeśmanowicz' Conjecture Concerning Pythagorean Numbers*),**)

By Maohua LE
Department of Mathematics, Zhanjiang Teachers College, Guangdong P. R. China
(Communicated by Shokichi IYANAGA, M. J. A., May 13, 1996)

Abstract

Let r, s be positive integers satisfying $r>s, 2 \mid r$ and $\operatorname{gcd}(r, s)=1$. In this paper, using Baker's method, we prove that if $2 \| r, r \geq 81 s$ and $s \equiv 3(\bmod 4)$, then the equation $\left(r^{2}-s^{2}\right)^{x}+(2 r s)^{y}=\left(r^{2}+s^{2}\right)^{z}$ has the only solution $(x, y, z)=(2,2,2)$.

Key words and phrases: Exponential diophantine equation; Jesmanowicz' conjecture; Baker's method.

1. Introduction. Let $\boldsymbol{Z}, \boldsymbol{N}, \boldsymbol{Q}$ be the sets of integers, positive integers and rational numbers, respectively. Let (a, b, c) be a primitive Pythagorean triple such that

$$
\begin{gather*}
a^{2}+b^{2}=c^{2}, a, b, c \in N \tag{1}\\
\operatorname{gcd}(a, b, c)=1,2 \mid b
\end{gather*}
$$

Then we have, as is well known,
(2) $a=r^{2}-s^{2}, b=2 r s, c=r^{2}+s^{3}$,
where r, s are positive integers satisfying $r>s$, $\operatorname{gcd}(r, s)=1$ and $2 \mid r s$. In [2], Jesmanowicz conjectured that the only solution of the equation
(3) $a^{x}+b^{y}=c^{z}, \quad x, y, z \in \boldsymbol{N}$
is $(x, y, z)=(2,2,2)$. This conjecture was proved for some special cases (see the references of [4]). But, in general, the problem is not solved as yet. Recently, Takakuwa and Asaeda [6] proved that if $2 \| r, s=3$ and r satisfies some other conditions, then the only solution of (3) is $(x, y, z)=(2,2,2)$. Guo and Le [1] showed that the conditions on r can be reduced to $r \geq 6000$, improving the result of [6]. In this paper we prove a general result as follows:

Theorem. If $2 \| r, s \equiv 3(\bmod 4)$ and $r \geq$ $81 s$, then the only solution of (3) is $(x, y, z)=$ $(2,2,2)$.

By this theorem, the above condition $r \geq$ 6000 in the result of [1] can be replaced by $r \geq$ 243.
2. Preliminaries. Lemma 1. ([5, page 2]). The equation

$$
X^{4}+Y^{2}=Z^{4}, X, Y, Z \in N
$$

[^0]has no solution (X, Y, Z).
Lemma 2. ([1, Lemma 2]). Let (x, y, z) be a solution of (3) with $(x, y, z) \neq(2,2,2)$. If $2 \| r$ and $s \equiv 3(\bmod 4)$, then we have $2 \mid x, y=1$ and $2 犭 z$.

Let α be a nonzero algebraic number with the defining polynomial $a_{0} z^{n}+a_{1} z^{n-1}+\cdots+$ $a_{n}=a_{0}\left(z-\sigma_{1} \alpha\right) \cdots\left(z-\sigma_{n} \alpha\right)$, where $a_{0} \in N$, $\sigma_{1} \alpha, \cdots, \sigma_{n} \alpha$ are all the conjugates of α. Then

$$
h(\alpha)=\frac{1}{n}\left(\log a_{0}+\sum_{i=1}^{n} \log \max \left(1,\left|\delta_{i} \alpha\right|\right)\right)
$$

is called Weil's height of α.
Lemma 3. Let α_{1}, α_{2} be positive real algebraic numbers which are multiplicatively independent. Further let $D=\left[\boldsymbol{Q}\left(\alpha_{1}, \boldsymbol{\alpha}_{2}\right): \boldsymbol{Q}\right]$ and $\log A_{j}$ $=\max \left(h\left(\alpha_{j}\right),\left|\log \alpha_{j}\right| / D, 1 / D\right)$ for $\quad j=1,2$. Let $\Lambda=b_{1} \log \alpha_{1}-b_{2} \log \alpha_{2}, b_{1}, b_{2} \in N$. Then we have

$$
\begin{gathered}
\log |\Lambda| \geq-32.31 D^{4}\left(\log A_{1}\right)\left(\log A_{2}\right) \\
\left(\max \left(\frac{10}{D}, 0.18+\log B\right)\right)^{2},
\end{gathered}
$$

where $B=b_{1} / D \log A_{2}+b_{2} / D \log A_{1}$.
Proof. Letting $h_{2}=10$ in the Table 2 in [3], we obtain this lemma immediately in the same way as Corollary 2 of [3].
3. Proof of theorem. We now assume that r and s satisfy $2 \| r, s \equiv 3(\bmod 4)$ and $r \geq 81 s$. Let (x, y, z) be a solution of (3) with (x, y, z) $\neq(2,2,2)$. Then, by Lemma 2 , we have
$a^{x}+b=c^{z}, 2 \mid x, 2 \nmid z$.
Further, by the proof of [1, Theorem], we have $z<x$.

$$
\begin{aligned}
& \text { Since } c=a+2 s^{2} \text {, we get from (2) that } \\
& \text { (5) } \quad \log c=\log a+\rho_{1} \text {, }
\end{aligned}
$$

where ρ_{1} satisfies
(6)

$$
0<\rho_{1}=\frac{2 s^{2}}{r^{2}} \sum_{k=0}^{\infty} \frac{1}{2 k+1}\left(\frac{s^{2}}{r^{2}}\right)^{2 k}
$$

$$
\leq \frac{2}{81^{2}} \sum_{k=0}^{\infty} \frac{81^{-4 k}}{2 k+1}<0.0003049
$$

Similarly, we get from (4) that
(7) $\quad z \log c-x \log a:=\rho_{2}$,
where ρ_{2} satisfies
(8) $0<\rho_{2}=\frac{2 b}{a^{x}+c^{z}} \sum_{k=0}^{\infty} \frac{1}{2 k+1}\left(\frac{b}{a^{x}+c^{z}}\right)^{2 k}<\frac{b}{a^{x}}$.

The combination of (5), (6) and (7) yields
(9) $z=\frac{(x-z) \log a+\rho_{2}}{\rho_{1}}>\frac{\log a}{\rho_{1}}>3279 \log a$.

Let $B=z / \log a+x / \log c$. Then we have
(10)

$$
B=\frac{2 x}{\log c}+\frac{\rho_{2}}{(\log a)(\log c)} .
$$

By Lemma 3 , if $B \leq e^{9.82}$, then we get
(11) $\quad \log \rho_{2} \geq-3231(\log a)(\log c)$.

From (8) and (11), we obtain

$$
\begin{equation*}
\frac{\log b}{\log a}+3231 \log c>x \tag{12}
\end{equation*}
$$

The combination of (9) and (12) yields

$$
1+3231 \log c>x>z>3279 \log a=
$$

$$
3279 \log c-3279 \rho_{1}>3279 \log c-1.1
$$

a contradiction.
On the other hand, by Lemma 3 , if $B>e^{9.82}$, then
(13) $\log \rho_{2} \geq-32.31(\log a)(\log c)(0.18+\log B)^{2}$.

From (8) and (13), we get

$$
\begin{gathered}
1+64.62(0.18+\log B)^{2}>\rho_{2}+\frac{2 \log b}{(\log a)(\log c)} \\
+64.62(0.18+\log B)^{2}>B
\end{gathered}
$$

whence we conclude that $B>4860$, a contradiction. Thus, the theorem is proved.

Acknowledgment. The author thanks the referee for his valuable suggestions.

References

[1] Y.-D. Guo and M.-H. Le: A note on Jeśmanowicz' conjecture concerning Pythagorean numbers. Comment. Math. Univ. St. Pauli, 44, 225-228 (1995).
[2] L. Jesmanowicz: Several remarks on Pythagorean numbers. Wiadom. Mat. (2) 1 (1955/1956), 196-202 (in Polish).
[3] M. Laurent, M. Mignotte and Y. Nesterenko: Formes linéaires en deux logarithmes et déterminants d'interpolation. J. Number Theory, 55, 285-321 (1995).
[4] M.-H. Le: A note on Jesmanowicz' conjecture. Colloq. Math., 69, 47-51 (1995).
[5] P. Ribenboim: 13 Lecture on Fermat's Last Theorem. Springer Verlag, New York (1979).
[6] K. Takakuwa and Y. Asaeda: On a conjecture on Pythagorean numbers II. Proc. Japan Acad. 69A, 287-290 (1993).

[^0]: *) 1991 Mathematics Subject Classification: 11D61, 11J86.
 **) Supported by the National Natural Science Foundation of China and the Guangdong Provincial Natural Science Foundation.

