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Commutant Algebra of Superderivations on a Grassmann Algebra
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(Communicated by Kiyosi ITO, M.J. A., Jan. 12, 1996)

Introduction. In his classical book [4], Weyl
gave the constructions of the representations of
the general linear groups by using Young's sym-
metrizers. Undoubtedly his theory is very impor-
tant in the representation theory and many suc-
cessors have worked in the generalization of this
theory. We also try to get a similar construction
for natural representations of Cartan-type Lie
algabras and Cartan-type Lie superalgabras. As
the first step in this direction, it seems necessary
to calculate the commutant algebra of this repre-
sentation. For the case of Cartan-type Lie algeb-
ra of vector fields, the first author successfully
found the commutant algebra for the case m < n
(see [2]), where m is the power of tensor product
and 7 is the rank of the Lie algebra. In this arti-
cle, we want to look for the commutant algebra of
the natural representation of Catan-type Lie su-
peralgebra W(n) consisting of all the superderiva-
tions on the Grassmann algebra of #z-variables
(see below for the definition). For the case m < n
(here also m is the power of tensor product), us-
ing the same method as in [2], we obtain the re-
sult (see Section 2). For the case m > n, it seems
more complicated, but for » = 1 and arbitrary m,
we get the similar result as in the case m < »;
furthermore, in this case we also get the bicom-
mutant algebra (see Section 3). For the general
case, we conjecture that the result is the same as
in the case m < n. As an evidence, in Section 4,
we give an example for the case n = 2, m = 3.

1. Lie superalgebra W (n) and its natural
representation. Let A(n) be a Grassmann algeb-
ra over C in # variables &, &,,---, §, and A, be
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the space of k-homogeneous elements of A(n).
Put An)5:= Z.evendy and An)7:= 22, 00els
then A(n) has a natural Z,-grading and so we
consider A(n) as a superalgebra. Let W(n) be
the set of all the superderivations over A(n),
then it becomes naturally a Lie superalgebra.
According to the results in [1], every superde-
rivation D € W(n) can be written in the form D

= Z P, with P, € A(n) 1 <

< n), where

i ag
5? is a superderivation of degree 1 defined by

0
—6?5, = 0,;. By definition, the Lie superalgebra
i
W(n) acts on Grassman algebra A(n) as follows:
for any homogeneous D € W(n) and V§ A ---
A&

D(Eil A o A Ei,) = Zr: (__ 1)(s—l)degD
s=1
E.N  ADED AN NE,.

We call it a natural representation of W(n), and
denote it by ¢.

Let us consider m-fold tensor product
®™A(n). Then we have a natural isomorphism
as W(n)-modules

R"Am) = Al§;|11<i<n, 1<j;<m]=:
An, m),
where A[§;|11<i<#n,1<j<mlis a Grass-
mann algebra generated by §;, (1 <i<#n,1<7
< m). In the following, we identify ®”A (%) with
A(n, m). By means of a tensor product, W(#n) is

imbedded into End(®”Ax)) = EndA(n, m).
More precisely, an element
n 0
D=2 P&, &) 55 € W)
i=1 i

corresponds to an element

¢°"(D) = 3 ZP(EI,-“

i=1 a=1
DerA(n, m)
via m-fold tensor product (/)®m of ¢.
Let %, denote the commutant algebra of
¢ " (W(n)) in End(A(n, m) :
» = {E € End(®”A(m)) | [E, D] = 0,

0
) %€, <
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VD€ ¢ (Wn))}.
Then %, has a natural Z,-graded structure,
€, = 6,5D €,1. However, 6,71 vanishes as we
see in the following lemma.

Lemma 1.1. The odd subspace €,,7 of €,
vanishes: 6,7 = {0}.

By this lemma, we have 6,
commutant algebra %,, becomes

= {E € End(®"A()) | ED = DE,
vDeE ¢ (Wn)}.

Denote by [m] the set {1,2, -, m} of inte-
gers, and put End[m] = {¢: [m] — [m]} the set
of all the maps from [m] to itself. By composition
of maps, End[m] becomes a semigroup with unit,
whose group elements form a permutation group
S,, of degree m. We call it a permutation semi-
group. Denote the semigroup ring of End[ml] by
€,. An element ¢ € End[m] acts on A(n, m) as
(pP)(§;) = P(§,,,;) (P € A(n, m)) and we ex-
tend it to €,, by linearity (see [2]), thus, we have
a representation of €, on A(n, m). Denote the
image algebra of this representation by §, C
EndA(n, m). The following lemma is easy to
prove.

Lemma 1.2. For arbitrary n and m, we have
8, < 8,

2. Commutant algebra of ¢°™(W (n)) (the
case m < n). Let (¢, A(n)) be the natural rep-
resentation of W) and (¢®", An, m)) its m-
fold tensor product. Denote by U(W(%)) the uni-
versal enveloping algebra of W(#n), then we have

Lemma 2.1. Put &(a) = (&, -, &,,). Then
the subalgebra ¢ " (UW@))) in EndA(n, m) is
generated by

= €,,1 hence the

2 P,(E(ap) -+ P(&(ay)
1<aj - a,<m ak
a&blaﬁ T asbkak,
where 1 < k and 1 < by, -+, b, < n are indices,
P, is a Grassmamnian polynomial in n-variables,
and P;(§(@) = P(&,, "+, &)
Lemma 2.2. If m < n, then the representation

of €,, on A(n, m) is faithful, hence we have
dim §,, = dim€,, = m™.

Note that the condition m < # is necessary.
In fact, in Sections 3 and 4, we will give exam-
ples where the representation of &, on A(n, m)
is not faithful.

Using Lemmas 2.1 and 2.2, we can prove
the following
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Theorem 2.3. If m < n, then the commutant
algebra 6, of " (W(n)) coincides with the repre-
sentation image 8,, of the semigroup ring €, of the
permutation semigroup End[m)] :

6, = 8,.

Proof. Take an E € 6,,. For Grassmannian

polynomials P, -+, P, in n-variables, put

X(Pl, Pz,' .. Pm) = - 2 S pl(g(al)) e
P, (&) o
" " a&lzla1 e asbmam’

which is in ¢ ®"(U(W(#))) by Lemma 2.1. Then
we have

E(P,(E(1))P,(E(2)) -+ P, (E(m)))
= EX(Py, Pp,-++, P A& N oo ANy
= X(Py, Py, PLYEG, NG N -t N &y

Since A(n, m) is generated by {P,(§(1)) - - -
P,(E(m)) | P, € Am)}, E is completely deter-
mined by E(E, A&, A - - ANE,,). On the
other hand, Euler operators

Z E;a as 1< ] n)
are contained in gb "(W(n)), and
Z Eja 65 E(Sll : /\Smm)
= £(£ b gz, Gun o A u)
01y = EE, N+ NE,) ifl<j<m,
@1 = 0 itm <j<n.

This means that if 1 < j < m, then E(§; A
N &, is the eigenvector of the Euler operator
with eigenvalue 1 and if m + 1 < j < #n, then

EE; N -+ NE,,) is in the kernel of the Euler
operator. So E(§;; A -+ A &,,) is of degree 1
in (§,,° ", &, if 1 <7< m, and degree O in
(&,,"*+, &) if m + 1 < j < n. Hence we obtain
E(Sll /\ * /\ Emm) = Z ajl.-.jm
1<jpeerim<m
Eu N AE ).

So dim %, is less than or equal to m™.

On the other hand, by Lemma 1.2, €,, con
tains the subalgebra &,, and by Lemma 2.2, its
dimension is equal to m™ if m < n. Therefore we
conclude the theorem. Q.E.D.

By the above theorem, we know the struc-
ture of the commutant algebra very well for the
case m < n. For the general case, we cannot get
a similar result until now. But for the special
case # =1 and n =2, m = 3, we obtain the
same result as above; furthermore for the case
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n = 1, we get the bicommutant algebra.

3. Schur duality for W(1) X End[m]. In
this section, we consider the case # = 1. In this
case, we get a result which is independent of m.
For n = 1, there holds

W) = {55 6 aep  deg () = 1
deg (S %) =0.

use the isomorphism

For convenience, we
AQ, m) = K& &, -, &, = A(m). So we have
m

-— m 0 — i
D= 9""(55) = L3
& 0
D,:= (/’ <§ ag) Z & a_gi
Obviously, D_,(4,) € A,_,, DO(Ak) S A, for any
k.
Lemma 3.1 The operator D_, is an exact de-
rivation, i.e., (D_)? = 0 and the chain complex
D, D_, D, D, . D,
0—A,—A,  — " —AL>A—>A—0
1S exact.

By the above lemma, we can prove the fol-
lowing theorem.

Theorem 3.2. Let n = 1 and the notations be
as above. Then the commutant algebra €, of ¢®m
(W(Q)) coincides with the representation image 8,
of semigroup ring €, of the permutation semigroup
Endlm] :

8, =%,

Proof. By Lemma 1.2, we have §,, € §,,, so

it is enough to prove 6, & 8,,. To do so, we in-

troduce some notations. For any E € §,,, put
E, —EIAk,sk ={E€%,|E,=0(VI>kK},

and D_, , = IA Clearly,
Cm = m —Sm_—"'331230=(0),
and

= D/ In-r) B Qi /) D - DYy
(as a vector space).
Since A, is decomposed as
Ay =RWD_y ) O Ay ANELD,
we get an isomorphism of vector spaces by using
Lemma 3.1:
m = (/) B (Rt /S) B - DY,

= Homy,,_, A &, A,,) ©
Homg(A,,_, A&, A,_) @ - @ Hom(§, 4).

On the other hand, we can construct a basis
of Homg(A,_; A &,, A,), using elements from
8,,- So we get a surjection

8 — @ Homo(Uyy A &, A) = 6,
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and dim %,, < dim §,,. By Lemma 1.2, we have
8, = %8, Q.ED.

From the proof of the above theorem, we can
easily know that the dimension of &, is
<2m -1

m—1
is not faithful as indicated in Section 2.

In the special case where » = 1, we also get
the bicommutant algebra of ¢®”(W(1)). The
next Theorem 3.3 states that it is the image of
the enveloping algebra ¢°”(U(W(1))). There-
fore, in this case, we get an analogue of Schur
duality for W(1) X End[m].

Theorem 3.3. The bicommutant algebra of
m-fold temsor product ¢)®m of the matural repre-
sentation ¢ of W(1) is equal to the image ¢)®m
(UWQ))) of the enveloping algebra.

The proof of this theorem is straight for-
ward, comparing dimensions of ¢®m(U(W(1)))
and the bicommutant algebra %,,. See [3] for the
detailed proof.

4. Toward the general case. For the gener-
al case, we suspect that the commutant algebra
€, of the representation ¢°” of W(n) is equal
to 8,. As an evidence, we give an example for
the case n = 2, m = 3. In this case, since the
rank and the dimensions are small, we can calcu-
late out the commutant algebra €, explicitly. Let
W(2) be a Cartan-type Lie superalgebra of rank
2 as above. We consider 3-fold tensor product
A(2,3) = ®°A(2) of the natural representation,
where A(2,3) is a Grassmann algebra generated
by (&, &,14,7=1,2,3}. By the definition of
¢ ®3 , we have

0> (W) = <D, D,,

where

), so the representation of €,, on A(m)

Dy li,j =12/,

3 _ 3
% 68 =2 Si“ a_Gja’

_ 0
Dm‘ - El Sm N EZO( a_sm-

Put A, =4, 1<i<3) @A,E, 1<
< 3), where A,(&; |11 < i< 3) (resp. 4,(&;]1
<7< 3)) is a homogeneous subspace of all the
Grassmannian polynomials of degree p (resp. q)
generated by {£,|1 <:<3) (resp {&;11 <y
< 3}), then ®°A(2) = ®},_44,, Note that for
any E € €3, we have E(A,,) © A,, and in the
algebra ¢ ®*(W(2)) we have the following rela-
tions:

DI=0, D}, =0G=1,2),
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(D\Dyy; + Dyp.D)) = [D,, Dy3p] = Dy,
(DyDyzy + DyyyDy) = [D,, Dyl = Dy,
Using above relations, we can show that any
E € €, is completely determined by E|A22 and
E IAM, and we obtain dim €, < 24 after some cal-
culations. On the other hand, also by direct cal-
culation, we have dim &, = 24. By the above

facts, we have the following theorem.

Theorem 4.1. Let n = 2 and m = 3. Then
the commutant algebra €5 of ¢ (W(2)) coincides
with the representation image 85 of semigroup ring
€, of the permutation semigroup End[3]:€, = &,
The dimension of €5 is equal to 24.
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