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Some Integral Transforms in the Space of Entire Functions of Exponential Type

By Vu Kim TUAN,™ Megumi SAIGO,* ™ and Dinh Thanh Duc** ™
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Abstract:

Some integral transform with the Humbert confluent hypergeometric function

of two variables @, in the kernel is proved to be an isomorphism in the space of entire func-

tions of exponential type.
Key words:
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1. Introduction. Let E°(c > 0) be the
class of entire functions of type at most o,
that means f€ E° if and only if f(2) =
0@“*"™ %y a5 | z| = oo for every & >0 [1].
The intersection of the restriction of E° on R
with L,(R) is denoted by M°.

It is well known (Paley-Wiener Theorem) [1]
that f € M? if and only if f is the Fourier trans-
form of a function f € L,(R) with compact sup-
port from [— o, ol:

1) fl@ = f:f(y)em’dy, fy € L,(— o, 0).

The space M’ plays an important role in the
theories of distribution and partial differential
equations. In this paper we establish some integ-
ral transform that is an isomorphism on M’. In
general, classical integral transforms as well as
integral transforms studied recently, e.g.
Srivastava-Buschman [4], Vu Kim Tuan [5], also
the table of integral transforms in Prudnikov et
al. [3], are mostly considered in L, and other

spaces.

2. Some preliminary results. We need
some elementary facts.

Lemma 1. Let k€ L, (R) and f€ M’

Then the convolution

2 8@ = kxN@ = [ kz— ) f@dy

also belongs to M°.
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In fact, in this case we have [1]
- — ~ -
¢ g=Fk*7=1F-7,
where f is the Fourier transform of f understood
either in L,(R) or L,(R)-meaning [1]

4) fl@= j:wf(y)e"”dy if fe L,(R),

- N :
(5) f(x) = lim f F)e™dy it fe L,(R)
N—oo ¥ =N

with the limit being taken in L,-norm. For f &€
L,(R) and k € L,(R), the convolution k * f
belongs to L,(R) [1]. Furthermore, supp(f)
C [— 0, 6] according to the Paley-Wiener
theorem, and hence

— ~ = -~
(6) supp(k* f) = supp(k-f) < supp (f)

< [—o,odl,

which means the support of k/*\f is included in
[— o, 0l. The Paley-Wiener theorem implies
now that kkfe M°.

Lemma 2. Letk € M’ and let k and 1/k be
both bounded. Then convolution (2) is an isomorph-
ism on M°.

In fact, if f€ M, then both f and k belong
to L,(R). Therefore, formula (3) remains valid.
Since k is bounded, one can follow the proof of
Lemma 1 to obtain that g € M°. Let now g €
M°. Putting

.1
(7) f= f'g-
Since 1/12 is bounded and Z € L,(R), it follows
that f € L,(R). Furthermore, supp (f) =

supp (&) < [— o, g]. Hence f€ M’. From (7)
we have that & can be decomposed in the form
(3), that means g can be expressed as the con-
volution of k and f in the form (2), where f €
M’. Lemma 2 is thus proved.
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Corollary. M° is the space of all square in-
tegrable eigenfunction of the operator

sin o(x — y)
® @ =1 [ WIEZD g
Y
Indeed, since the Fourier transform of
sinoy/my is the characteristic  function

Xi-0,00(X) of the interval [— g, d], equation (8)
is equivalent to R

(9) @) = X com@ f2).

Equation (9) has solutions if and only if
supp (f) < [— o, ol that means f€ M°.

3. Some integral transforms. Since f(x) €
M’ if and only if f(x/0) € M', we will consider
only Ml, for simplicity. Let
S rQe +iy)

(10) k(z) = 72 TA+ il A+ 77— ic)
ir—ia 2 -

A @A+ A — 2" (E —-1- x) e,

where a, 7 € R, a & [1, o). Then k(z) and

11 1 _1 ,73,3_,,/21"(1+za)1"(1+zr i)

(11) ae r@2+ip

k@ =«
—ia fa—i 2 8 —-bx
Han@ A+ DA - (21— g) "
are both bounded. Therefore by virtue of Lemma
2, the transform (2) with the kernel k(x) is an

isomorphism on M' We will find the form of
k(x) now. We have

1 - —ix
k@ =5z [ k@e ™y

—ir—1_—B8 b/2
=25 ir aB

B—ir —B b/2

re+ i
ra+i)ra +ir — i

! ia ir—iaf 2 - —ix
.f:l(l_’_y) (1'—1/)7 (Z_l_y> eby/z ”dy.
Putting y = 2¢ — 1, we obtain

_ re+ iy
12) k@ = Fa T + iy — i@
. 1. o
’eu:f tta(l _ t)tr—m(l — at -Be“_zmtdt.
0

The integral in (12) can be expressed through
the Humbert confluent hypergeometric function of
two variables @,(a, B, 7;, ¥) [2]

r
(13) 0@, B, 737, ) = T Py

1
. j; A = DT — x) P dt
= P @ninBy 2y

2 P mInl
where (@),, = I'la + m)/I'(a) is the Pochham-
mer symbol [2]. We get
(14) k(x) = "0, + ia, B, 2+ iy ;a, b— 2ix).
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Similarly, from (11) we obtain

Is 1 r e _ | QA+ i) lA + iy —da)
(15) . /;(y) @2 + iy)
e"0,(1 —ia, — B, 2—ir;a, —b— 2ix).

Thus we have
Theorem. Let a, vy € R, a €[1, ).
ntegral transform

16) g@ = [ “V0,( +ia, B, 2+ ir;a,
b+ 2i(y — ) f(wdy

is an isomorphism on M Y and the inverse transform
has the form
| IA+ i) I + iy — i) |?
flx) = ‘ w2 + iy)

f ¢“0.( —ia, — B, 2 —ir;a,

— b+ 2ily —0))glydy.
If, moreover, a € (— ©°, 1) and Ref = Reb = 0,
then

(18)

The

(17)

| £l = ra+iora+ir—
Fle = 2@ + i)
4. Special cases. 1) Let in (16) and (17)

B = b= 0. Then we obtain a pair of transforms
in M*

o)
I gl

(19) glx) = [, "™ F,(1+ ia,
2+ ir;2i(y — x)) f(y) dy,
20) fQ) = ’I‘(l+ia)l’(1+ir—ia) z

x@2 + iy
f ei(z—u) 1F1(1 — i, 2 — iT ; Zz(y — x))g(y)dy,

where ,F,(a, 7 ;) is the confluent hypergeomet-
ric function [2]:

(21) Fa, 7;2) = m%ﬁ%fn_”:
2) Let y = a in (19) and (20). We get
(22) glx) = j:: (x — )"t
c 7+ e, 2i(x — 9) f(Ydy,
(23) f@) = N SE—

T
c (1 — i, 2i(x — y) g(y)dy,
where 7(a, x) is the incomplete Gamma function
(2].
3) Let in (19) and (20) y = 2a. Then

8@ = [ 4= 0" s — D f D,

f(x) ) ia—1/2

a
(25) ~ 8sinh 7« .]:w -z
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. ll,z_ia(y — x)g(y) dy, Tricomi: Higher Transcendental Functions.
where J,(x) is the Bessel function of the first vols. I, II. McGraw-Hill, New York, Toronto, Lon-
kind [2]. don (1953).
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