Discretization of Non-Lipschitz Continuous O.D.E. and Chaos

By Yoichi MAEDA and Masaya Yamaguti
Ryukoku University
(Communicated by Kiyosi ITÔ, M. J. A. , Feb. 13, 1996)

1. Introduction. In the previous paper [1], we investigated Euler's discretization of the scalar autonomous ordinary differential equation which has only one stable equilibrium point. Under some conditions, it is shown that Euler's finite difference scheme $F_{\Delta t}$ is chaotic for a sufficiently large fixed time step Δt.

On the contrary, in this paper, for a sufficiently small fixed time step Δt, we will find the necessary and sufficient conditions under which $F_{\Delta t}$ is stable in the neighborhood of the equilibrium point, and the sufficient conditions under which $F_{\Delta t}$ is chaotic around the equilibrium point.
2. Definitions and assumptions. For the scalar autonomous O.D.E.

$$
\begin{equation*}
\frac{d u}{d t}=f(u) \quad u \in \boldsymbol{R}^{1} \tag{1}
\end{equation*}
$$

we put following assumptions:

$$
\left\{\begin{array}{l}
f(u) \text { is continuous in } \boldsymbol{R}^{1} \\
f(u)>0 \quad(u<0) \\
f(0)=0 \\
f(u)<0 \quad(0<u)
\end{array}\right.
$$

In other words, $u=0$ is the only stable equilibrium point. Euler's discretization scheme for (1) is as follows: with the fixed time step Δt,

$$
\begin{gathered}
\frac{x_{n+1}-x_{n}}{\Delta t}=f\left(x_{n}\right) \\
x_{n+1}=x_{n}+\Delta t \cdot f\left(x_{n}\right)
\end{gathered}
$$

Now, finite difference scheme $F_{\Delta t}(x)$ is defined as (2) $\quad F_{\Delta t}(x)=x+\Delta t \cdot f(x)$, (i.e. $x_{n+1}=F_{\Delta t}\left(x_{n}\right)$) and we will investigate this dynamical system $F_{\Delta t}(x)$.
3. Condition for stable behavior of $F_{\Delta t}$. Generally speaking, Euler's finite difference scheme with sufficiently small Δt gives a good approximation for the solution of differential equation. For example, consider a differential equation
$\frac{d u}{d t}=a u(1-u)(u \geq 0, a$ is a positive constant $)$. The orbits of the corresponding dynamical
system (2) converge to a stable equilibrium point $u=1$ with any Δt less than $2 / a$. But the next example shows that however small Δt is chosen, the orbits don't always converge to the equilibrium point:

$$
\frac{d u}{d t}= \begin{cases}\sqrt{-u} & (u<0) \\ -\sqrt{u} & (u \geq 0)\end{cases}
$$

In this case, $F_{\Delta t}(x)$ is super-unstable at $x=0$ $\left(F_{\Delta t}^{\prime}(0)=-\infty\right)$, and it has a super-stable orbit ($\pm \Delta t^{2} / 4$) with period 2 .

Theorem 1(Lipschitz case). Assume that (1) holds the following additional condition:

$$
\begin{equation*}
\left|\frac{f(u)}{-u}\right|<M_{0} \quad(\forall u<0) \tag{3}
\end{equation*}
$$

(M_{0} is a positive constant).
Then, there exists $\Delta T>0$, such that for any $\Delta t(0<\Delta t<\Delta T), F_{\Delta t}$ has no periodic orbit except the equilibrium point $x=0$. And for any initial point $x_{0}, F_{\Delta t}^{n}\left(x_{0}\right)$ converges to the equilibrium point.

Proof of Theorem 1. Define subsets D_{-}, D_{+}, D_{0} and D^{\prime} of \boldsymbol{R}^{2} by $D_{-}=\{(x, y) \mid x<y<0\}$, $D_{+}=\{(x, y) \mid 0<y<x\}$ $D_{0}=\{(x, y) \mid 0<x, y=0\}$, $D^{\prime}=\{(x, y) \mid y<0<x\}$.
Set $\Delta T=1 / M_{0}$. From the condition (3), for any $\Delta t(0<\forall \Delta t<\Delta T)$ and any $x<0$,
$F_{\Delta t}(x)=x+\Delta t \cdot f(x)<x+\Delta T \cdot f(x)<x$ $+\Delta T \cdot\left(-M_{0} x\right)=x\left(1-M_{0} \Delta T\right)=0$.
On the other hand, $F_{\Delta t}(x)=x+\Delta t \cdot f(x)>$ x, so $x<F_{\Delta t}(x)<0$.
Hence, $x<0$ implies $\left(x, F_{\Delta t}(x)\right) \in D_{-}$for any $\Delta t(0<\forall \Delta t<\Delta T)$.

Let $x_{n}=F_{\Delta t}^{n}\left(x_{0}\right)(n \geq 0)$ be an orbit of $F_{\Delta t}$. There are 4 cases of behavior of x_{n} as follows:
Case (a) $x_{0}<0$. Then $\left(x_{n}, x_{n+1}\right) \in D_{-}$for any $n \geq 0$. Therefore the sequence x_{n} increases monotonously towards the equilibrium point.
Case (b) $x_{0}>0$, and $\left(x_{n}, x_{n+1}\right) \in D_{+}$for any $n \geq 0$. Then the sequence x_{n} decreases monotonously towards the equilibrium point.

Case (c) There exists $N \geq 0$ such that (x_{N}, $\left.x_{N+1}\right) \in D_{0}$. Then $x_{N+1}=x_{N+2}=\cdots=0$, so x_{n} also converges to the equilibrium point.
Case (d) There exists $N \geq 0$ such that $\left(x_{N}\right.$, $\left.x_{N+1}\right) \in D^{\prime}$. From the fact $x_{N+1}<0$, this case is reduced to Case (a).
Consequently, x_{n} converges to the equilibrium point in any case.
Q.E.D.

In the above discussion, if we want to show the stability of $F_{\Delta t}$ only in the neighborhood of the equilibrium point, the condition (3) can be eased to $|f(u) /(-u)|<M_{0}(\exists K<u<0)$. But this condition is not available for $u \in \boldsymbol{R}^{1}$. Consider

$$
\frac{d u}{d t}= \begin{cases}u^{2} & (u<0) \\ -u^{2} & (u \geq 0)\end{cases}
$$

In this case, for any Δt,

$$
F_{\Delta t}^{2}\left(\pm \frac{2}{\Delta t}\right)= \pm \frac{2}{\Delta t}
$$

that is to say, there exists a periodic orbit with period 2.

From the point symmetry at the origin, the condition (3) can be changed to boundedness of $|f(u) / u|$ in the right neighborhood of the equilibrium point. Therefore if neither right nor left limit of $f(u) / u$ is $-\infty, F_{\Delta t}^{n}(x)$ converges to the equilibrium point in its neighborhood with a sufficiently small Δt. On the other hand, if either right and left limit of $f(u) / u$ is $-\infty$, the equilibrium point is super-unstable $\left(F_{\Delta t}^{\prime}(0)=-\right.$ $\infty)$ with any Δt.

Corollary 1. (i) $F_{\Delta t}^{n}(x)$ converges to the equilibrium point in its neighborhood with a sufficiently small Δt.

$$
\Leftrightarrow \varlimsup_{\lim _{u \rightarrow-0}} \frac{f(u)}{-u}<+\infty \text { or } \varlimsup_{u \rightarrow+0} \frac{-f(u)}{u}<+\infty
$$

(ii) $F_{\Delta t}^{n}(x)$ never converges to the equilibrium point with any Δt.

$$
\Leftrightarrow \lim _{u \rightarrow 0} \frac{f(u)}{u}=-\infty
$$

4. Phenomena around the super-unstable equilibrium point. If the limit of $f(u) / u$ is $-\infty$, the equilibrium point of $F_{\Delta t}$ is super-unstable. Moreover, this condition implies the following.

Theorem 2. If $\lim _{u \rightarrow 0} \frac{f(u)}{u}=-\infty$,
then, there exists $\Delta T>0$, such that $F_{\Delta t}(x)$ has a periodic orbit with period 2 for any $\Delta t(0<$ $\forall \Delta t<\Delta T$)

Proof of Theorem 2. Let us set $\Delta T=$
$\sup _{x \neq 0} \frac{-x}{f(x)} \quad(0<\Delta T \leq+\infty)$. For any $\Delta t(0<$ $\forall \Delta t<\Delta T)$, there exists $x_{0} \neq 0$ such that $\Delta t=$ $-x_{0} / f\left(x_{0}\right)$. Without loss of generality, $x_{0}<0$. Then $F_{\Delta t}\left(x_{0}\right)=x_{0}+\Delta t \cdot f\left(x_{0}\right)=0$, and $F_{\Delta t}^{2}\left(x_{0}\right)$ $=0>x_{0}$. Hence $x_{0}<F_{\Delta t}^{2}\left(x_{0}\right)$.

On the other hand, if we show the existence of $x_{1}\left(x_{0}<\exists x_{1}<0\right)$ such that $F_{\Delta t}^{2}\left(x_{1}\right)<x_{1}$, there exists an orbit with period 2 by the intermediate value theorem. The proof is the following.

At first we can show the existence of K_{1} $<0\left(x_{0}<K_{1}\right)$ such that

$$
F_{\Delta t}(x)>-x\left(K_{1}<\forall x<0\right)
$$

In fact, $F_{\Delta t}(x)+x=2 x+\Delta t \cdot f(x)=x\{2+$ $\Delta t \cdot f(x) / x\}$ is positive for sufficiently small negative x because $x<0$ and $f(x) / x \rightarrow-\infty$ ($x \rightarrow-0$) .

In the same way, as $\lim _{u \rightarrow+0} f(u) / u=-\infty$, there exists $K_{2}>0$ such that

$$
F_{\Delta t}(x)<-x\left(0<\forall x<K_{2}\right)
$$

Now that $\lim _{x \rightarrow-0} F_{\Delta t}(x)=0$, there exists $x_{1}\left(K_{1}\right.$ $\left.<\exists x_{1}<0\right)$ such that $F_{\Delta t}\left(x_{1}\right)<K_{2}$. Then $F_{\Delta t}\left(x_{1}\right)>-x_{1}(>0)$ because $K_{1}<x_{1}<0$, and besides $F_{\Delta t}\left(F_{\Delta t}\left(x_{1}\right)\right)<-F_{\Delta t}\left(x_{1}\right)$ for $0<F_{\Delta t}\left(x_{1}\right)$ $<K_{2}$.
In this way, it follows $F_{\Delta t}^{2}\left(x_{1}\right)<-F_{\Delta t}\left(x_{1}\right)<x_{1}$, and we can show the existence of $x_{1}\left(>x_{2}\right)$ such that $F_{\Delta t}^{2}\left(x_{1}\right)<x_{1}$.
Q.E.D.

Theorem 2 assures the existence of the periodic orbit with period 2 for a sufficiently small Δt. Moreover if there is a periodic orbit with period 3, $F_{\Delta t}$ is chaotic in the sense of Li-Yorke [2]. In this case, Yamaguti-Maeda already proposed an example [3]. Now we show another example which the order of infinitesimal of $f(u)$ is different between $u \rightarrow-0$ and $u \rightarrow+$ 0 .

Theorem 3. Suppose that $0<\alpha<1$ and the following conditions:
(i) $f(u)=O\left((-u)^{\alpha}\right) \quad(u \rightarrow-0)$
(ii) $\lim _{u \rightarrow+0} \frac{f(u)}{u^{\alpha}}=-\infty$.

Then there exists $\Delta T>0$ such that $F_{\Delta t}(x)$ is chaotic in the sense of Li-Yorke for any $\Delta t(0<\forall \Delta t<\Delta T)$.

Proof of Theorem 3. To prove chaos in the sense of Li -Yorke, it is enough to show the existence of $a, b=F_{\Delta t}(a), c=F_{\Delta t}(b)$ and $d=$ $F_{\Delta t}(c)$ which satisfy $d \leq a<b<c$. From (i),
there exists $K>0, L_{1}>L_{2}>0$ such that $L_{2}(-x)^{\alpha} \leq f(x) \leq L_{1_{1}}(-x)^{\alpha}(-K<\forall x<0)$. Let $b=-\left(L_{2} \alpha \cdot \Delta t\right)^{\frac{1}{1-\alpha}}(b<0)$. Before discussing about a, let us prepare 2 numbers, say N and Δ_{1} :
N is an unique positive solution of $N=$ $L_{1} N^{\alpha}+\left(L_{2} \alpha\right)^{\frac{1}{1-\alpha}}$,
(4) Δ_{1} is a positive constant such that $N \cdot \Delta t^{\frac{1}{1-\alpha}}$ $<K\left(0<\forall \Delta t<\Delta_{1}\right)$.
In the following discussion, assume that $0<\Delta t$ $<\Delta_{1}$.

Lemma (a). There exists $a\left(-N \cdot \Delta t^{\frac{1}{1-\alpha}}\right.$ $\leq a<b)$ which satisfies $F_{\Delta t}(a)=b$ for any Δt $\left(0<\forall \Delta t<\Delta_{1}\right)$.

Proof of Lemma (a). This can be proved by the intermediate value theorem.

$$
\begin{aligned}
& F_{\Delta t}\left(-N \cdot \Delta t^{\frac{1}{1-\alpha}}\right) \\
& =-N \cdot \Delta t^{\frac{1}{1-\alpha}}+\Delta t \cdot f\left(-N \cdot \Delta t^{\frac{1}{1-\alpha}}\right) \\
& \leq-N \cdot \Delta t^{\frac{1}{1-\alpha}}+\Delta t \cdot L_{1}\left(N \cdot \Delta t^{\frac{1}{1-\alpha}}\right)^{\alpha}(\mathrm{by}(4)) \\
& =\left(L_{1} N^{\alpha}-N\right) \cdot \Delta t^{\frac{1}{1-\alpha}} \\
& =-\left(L_{2} \alpha\right)^{\frac{1}{1-\alpha}} \cdot \Delta t^{\frac{1}{1-\alpha}}=b .
\end{aligned}
$$

(5) Hence, $F_{\Delta t}\left(-N \cdot \Delta t^{\frac{1}{1-\alpha}}\right) \leq b$.

On the other hand, $F_{\Delta t}(b)=b+\Delta t \cdot f(b)>b$, so

$$
\begin{equation*}
F_{\Delta t}(b)>b \tag{6}
\end{equation*}
$$

From (5), (6) and the continuity of $F_{\Delta t}(x)$, (intermediate value theorem)

$$
-N \cdot \Delta t^{\frac{1}{1-\alpha}} \leq \exists a<b \text { s.t. } F_{\Delta t}(a)=b
$$

Q.E.D. of Lemma (a)

This is why a exists. Note that

$$
-K<-N \cdot \Delta t^{\frac{1}{1-\alpha}} \leq a<b<0
$$

Next, let us estimate $c\left(c=F_{\Delta t}(b)=b+\Delta t\right.$. $f(b)$). From $-K<b<0$,

$$
b+\Delta t \cdot L_{2}(-b)^{\alpha} \leq c \leq b+\Delta t \cdot L_{1}(-b)^{\alpha}
$$

$$
\begin{aligned}
& -\left(L_{2} \alpha \cdot \Delta t\right)^{\frac{1}{1-\alpha}}+\Delta t \cdot L_{2}\left(L_{2} \alpha \cdot \Delta t\right)^{\frac{\alpha}{1-\alpha}} \leq c \\
& \leq-\left(L_{2} \alpha \cdot \Delta t\right)^{\frac{1}{1-\alpha}}+\Delta t \cdot L_{1}\left(L_{2} \alpha \cdot \Delta t\right)^{\frac{\alpha}{1-\alpha}} \\
& L_{2}^{\frac{1}{1-\alpha}}\left(\alpha^{\frac{\alpha}{1-\alpha}}-\alpha^{\frac{1}{1-\alpha}} \cdot \Delta t^{\frac{1}{1-\alpha}} \leq c\right. \\
& \quad \leq\left\{L_{1}\left(L_{2} \alpha\right)^{\frac{\alpha}{1-\alpha}}-\left(L_{2} \alpha\right)^{\frac{1}{1-\alpha}}\right\} \cdot \Delta t^{\frac{1}{1-\alpha}}
\end{aligned}
$$

c is positive because of $\alpha^{\frac{\alpha}{1-\alpha}}-\alpha^{\frac{1}{1-\alpha}}>0$. The following constants C_{1}, C_{2} are independent of Δt.

$$
\begin{aligned}
& C_{1}=L_{1}\left(L_{2} \alpha\right)^{\frac{\alpha}{1-\alpha}}-\left(L_{2} \alpha\right)^{\frac{1}{1-\alpha}} \\
& C_{2}=L_{2}^{\frac{1}{1-\alpha}}\left(\alpha^{\frac{\alpha}{1-\alpha}}-\alpha^{\frac{1}{1-\alpha}}\right)
\end{aligned}
$$

Finally, from $d=F_{\Delta t}(c)=c+\Delta t \cdot f(c)$, let us show $a-d>0$.
(7) $\quad a-d \geq-N \cdot \Delta t^{\frac{1}{1-\alpha}}-c-\Delta t \cdot f(c)$

$$
\begin{aligned}
& \geq-N \cdot \Delta t^{\frac{1}{1-\alpha}}-C_{1} \cdot \Delta t^{\frac{1}{1-\alpha}}-\Delta t \cdot f(c) \\
& =\Delta t^{\frac{1}{1-\alpha}} \cdot\left\{-\left(N+C_{1}\right)-\frac{f(c)}{\Delta t^{\frac{\alpha}{1-\alpha}}}\right\} \\
& =\Delta t^{\frac{1}{1-\alpha}} \cdot\left\{-\left(N+C_{1}\right)+\left(\frac{c}{\Delta \frac{1}{\frac{1}{1-\alpha}}}\right)^{\alpha} \cdot\left(\frac{-f(c)}{c^{\alpha}}\right)\right\} \\
& \geq \Delta t^{\frac{1}{1-\alpha}} \cdot\left\{-\left(N+C_{1}\right)+C_{2}^{\alpha} \cdot\left(\frac{-f(c)}{c^{\alpha}}\right)\right\}
\end{aligned}
$$

Since $c \rightarrow+0(\Delta t \rightarrow+0)$, (7) is positive for a sufficiently small Δt, thus,
$\exists \Delta T>0$ s.t. $d \leq a(0<\forall \Delta t<\Delta T) \quad$ Q.E.D.
An example of Theorem 3 is the following:

$$
f(u)= \begin{cases}(-u)^{\alpha} & (u<0) \\ -u^{\beta} & (u \geq 0) \quad(0<\beta<\alpha<1)\end{cases}
$$

References

[1] Y. Maeda: Euler's discretization revisited. Proc. Japan Acad., 71A, 58-61 (1995).
[2] T-Y. Li and J. A. Yorke: Period three implies chaos. Amer. Math., Monthly, 82, 985-992 (1975).
[3] M. Yamaguti and Y. Maeda: On the discretization of O.D.E. Proceedings of ICIAM 95.

