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§1. Method to be used. Let 7, be the rank
of the elliptic curve y2 =2° — n’z. We will
prove in this paper 7, is two for » = 1513 =
17-89 using Tate’s method (cf. [3]).

Ifx/y= #® for some rational number u, we
write £ ~ y. Consider the diophantine equations:
(1) dX*'— /Y =2%d|n*,d+ £1,d+ £n
(2) dX'+ @n*/dy'=2%dlan’, d + 1
Let {d,,..., d,} be the set of d's for which (1) is
solvable in X, Y, Z with (X, (W*/d)YZ) = (Y,
dXZ) =1 and {d,,,,...,d,.,} be the set of d's
for which (2) is solvable in X, Y, Z with (X,
Un*/d)YZ) = (Y, dXZ) = 1 (we assume d, +
dfor1<i<j<pandforuy+1=<i<j=<pu
+ v). Then 2> = (4 + 1) (1 + v) which gives
7y

For n = 17 - 89, we have a solution of (1)
17°-89-3" — 895 = 1424” and a solution of(2):
2-17-89-7" 4+ 2-17-89-5"' = 3026 Therefore
we get 7, = 2. For proving 7, = 2, we must
show that the next five diophantine equations
have no solutions.

(3) 17-89X* + 4-17-89Y* = Z?
(4) 17X* + 4-17-89°Y* = 7?
(5) 17-89°X* + 4-17Y'=Z2°
(6) 89X* + 4-17°-89Y"* = Z°*
(7) 89-17°X*+  4-89Y*= Z*

§2. Non solvability of (3)-(7). If (3) is solv-
able then Z = 17 - 89W for some integer W and
we get X* + 4Y* = 17-89W?> This equation can
be written as (X?)? + @QY?)* = 7" + 28)W”.
We need next lemma (cf. [2] p. 317).

Lemma. When @ = odd, b = even, ¢ = a°
+ b* = square free, (z,y) =1, £=odd, y=
even and z° + y° = ¢z = (&’ + b°)2z*. Then we
have

(ax + by + c2)(ax — by — c2) = — c(y + b2)*
d= (ax + by + cz, ax — by — cz) = twice a
square

Proof. Put A=ax+ by+ cz, B= ax —

by — cz. Then
AB = a’2* — bzy2 — 2bcyz — &’z

= a’(c2® — y?) — b*y® — 2bcyz — *2°
= c(d®2® — y* — 2byz — ¢2°)
= ¢(— y* — 2byz — b’z%
= —¢(y + b2)*
As A= B=0(mod2) and d|A+ B = 2az,
we have 2 || d. Let p be an odd prime divisor of d.
Then p | ax and P | y + bz because ¢ is square
free. If p|a then p| (y + b2) (y — b2) = a’2" —
2>, So we have p’x. If p | x then p | az. But (z, 2)
=1, so we have p|a. If p|ly — bz then p| (y +
bz) + (y — bz) = 2y. But (z, y) = 1, so we have
P X y— bz Let p" | a, p' | x. When k < I then ka
|y + bz. So we have pz" |d. When k& > I we have
pz’ | d. When k = I, we have ka |d. But d| A +
B = 2ax, so we have ka | d. Therefore d is twice
a square.
From this lemma, we can find ¢, ¢, %, v
such that
ar = clu2 — czvz, €,C, = ¢, 2uv =y + bz
When z= X2, y=2Y’, z=W,a=27, b= 28
then £ = odd because of (X, 4:17:-89Y2) =1
and we have
27X% = clu2 — ¢,v°, ¢,c, = 17-89
Using 17 = 1 (mod 4), (%) = —1, (%) =1,
we have a contradiction. So (3) has no solution.
If (4) is solvable, then Z = 17W for some in-
teger W and we get
XH*+ (2-89YH* = A* + 4HW*
As X is odd, we have W = odd, Y = even and
X% = clu2 — czvz, ¢, =17,
2uv = 2-89Y° + 4W = 4 (mod 8)
From this we have ¢,u° — ¢,v° = £ 3 (mod 8).
This is a contradiction. So (4) had no solution. In
the same way, (5) has no solution.
If (6) is solvable, then Z = 89 W for some in-
teger W and we get
XH*+ 2-17YH* = 5" + 8HW*
As X is odd, we have W = odd, Y = even and
5X° = c,u’ — c,v°, c,c, = 89,
2uv = 2-17Y% + 8W = 0 (mod 8)
Therefore ¢;u” — ¢,v° = = 1 (mod 8). This is a



No. 2]

contradiction. So (6) has no solution. In the same
way, (7) has no solution. Therefore we get #,5,5 =
2. Similarly we can get 7,54 = 2.
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