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This is a continuation of series of papers [2]
each of which will be referred to as (I), (II), (III),
(IV), (V), (VD) in this paper. In (VI) we considered
exclusively real triangles ¢= (a, b, ¢) and
showed that there is a 1-1 correspondence be-
tween the classes of similarity of #'s and the iso-
morphism classes of triples E,’s of elliptic
curves. In this paper, we pursue the same theme
for those objects rational over any subfield k£ of
R. This time, we shall introduce a third object (a
quartic surface over @) in addition to triangles
and elliptic curves to clarify the matter.

§1. Trand S.. As in (VI), we begin with
the set
A Tr=1{=1(a, b, o) €ER;0<a<b+ec,

0<b<c+a 0<c<a-++ b}

For t, t' € Tr, we write { ~ t’ if they are simi-
lar, i.e., if £t = 7t for some » € R. For any sub-
field £k < R, put
(1.2) Tr(k) = Tr N k.
If t~1t,t t € Tr(k), note that t= 7t with
r < k. So we can speak of the embedding
Tr(k) < T7 of quotients in the obvious way.
Next, we consider the set

S,={P=(x,y,2) €R’; x,y,2>0,

(xy)% + (yz)% + (zx)% =1},
where (and hereafter) we assume that a2 > 0
when a > 0. On rationalizing the defining rela-
tion in (1.3), we have
(1.4) S,={PE€R:;1>zxy+ yz+ zr,
(Q—zy—yz—z2x)’—4(x+y+2)2yz— 8xyz=0},
where (and hereafter) we put, for k C R, k, =
{a€ k;a> 0}
For k C R, we put
S,(k) =S, n kK.

Let A, B, C be angles of t= (a, b, ¢) so
that A is between sides b and c ; similarly for B,
C. Call 6 a map: Tr— Ri given by
(1.6) 6(t) = (tan’(A/2), tan’(B/2), tan’(C/2)).
Since 0 is defined by angles only, it induces a
map 6 : Tr— R:.
(1.8) Theorem. For any subfield k < R, the map

(1.3)

(1.5)

6 induces a bijection :
Trk) = S, (k).

Proof. By abuse of notation, put
(1.9 f(a) =tana,a€I= (0, n/2).

Note that f is a monotone increasing function

with range (0, + ©0) which satisfies the func-

tional equation

(1.10) fl@fx/2—a) =1,a€ 1,

and the (stronger form of) addition formula

111  f@f@® +fPB @)+ fla) =1
Sa+pB+r=xn/2.

Now let t = (a, b, ¢) € Tr and A, B, C be
angles of ¢ as above. Puttinga = A/2,8=B/2,
ry=C/2 in (1.9), (1.11), we find that the point
6t) = (f(@?, FB?, F(1? belongs to S,.

It is obvious that 6(f) = 6(¢) implies ¢~ ¢
Hence the map 6:Tr— S, is injective. Next, for
a subfield Kk C R, let t= (a, b, c) € Tr(k).
Then cos A = (B> + ¢ — a®)/2bc belongs to k
and so does f(a)® = (1 — cos A)/(1 + cos A) ;
similarly for f(B)?, f(y)%. Hence 6 induces an in-
jection T7(k) — S, (k). Finally, it remains to
show that this map is surjective. So take any
point P = (x, y, 2) € S,(k). By (1.11), we can
find angles A, B, C, 0 < A, B, C < w so that A
+ B+ C=nx and that z=f(@? y=rf(P°>
z=f(y)? where @ = A/2, etc. Choose a triangle
t=(a, b, c) € Tr with angles A, B, C such
that ¢ = 1. (In case ¢t happens to be a right
triangle, we may assume without loss of general-
ity that C = m /2, i.e., ¢ = the hypotenuse of t =
1.) Note that cosA = (1 — f(@?*)/1 + f(a)?
= (1 — x)/(1 + x) € k; similarly cos B, cos C
€ k. On the other hand, though sinA =
27(a)/(1 + f(@)? may not belong to k in gene-
ral, note also that sin’A = 4z/(1 + 2)° € k;
similarly for sin’B, sin’C. On squaring each
term of the sine formula, we have

(1.11) a’/sin’A = b*/sin’B = 1/sin’C,

so we see that a’, b° belong to k. Since cos A,
cos B are both non-zero elements of k (by our
assumption on the angle C), the cosine formulas
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ad=b+1 — 2bcos A, b>’=1+a’ — 2acos B
imply that t = (a, b, ¢) € Tr(k) with 6(t) = P.
Q.E.D.
§2. Trand 8. In (VI) §3, we associated to
each t € Tr an ordered triple E, = {E,, E,,
E,) of elliptic curves defined over R :
E,:Y'=z2"+Px"+ QX,
P, = %(b2 + =4,
(21) E,:Y’=2*+ P2+ QX,
Pb — _é_(cz + a2 _ bZ),
E, Y =2+Pax®+ QX,

, = %(az +b* = ¢?
with @ = — (area of #)* = —1% (@ + b+ ¢ —
24°b" — 2b°¢" — 2c%a%).

Let us denote by & the set of all E,, t € T7,
and call ¢ the map Tr— & given by
(2.2) o) =E, te Tr.
For t=(a, b, 0, t = (&, b, ¢’) € Tr, triples
E,, E, are said to be isomorphic over R (written
E,=E,)if E,, E,, E, are isomorphic over R to
E,, E,, E., respectively. In this situation, we
know that
(2.3)VL,(35) t~tVe E,=E, t t € Tr.
For a subfield k€ R, if t= (a, b, ¢) € Trk)
then elliptic curves E,, E,, E, are all defined
over k. Denote by &(k) the set of all E,, t €
Tr(k). The map ¢ induces a map (written ¢
again) Tr(k) — (k). For ¢t, t’ € Tr(k), the iso-
morphism E, = E, over k is defined in the ob-
vious way. Assume now that ¢t~ ¢, ¢t V' €
Tr(k); so t=rt', r € k. Since P,, @ are forms
in Qla, b, c] of degree 2,4, respectively, we
have P,() = 7’P,(t"), Q(®) = r*Q(t"). Then the
map (X, V) = (#’X, ’Y) induces an isomorph-
ism E, = E,, over k; similarly for E,, E,. De-
note by (k) the quotient of (k) defined by iso-
morphisms over k. Then the map ¢ induces a
map ¢ : Tr(k) — &(k) which is surjective by the
definition of & (k).
(2.4)Theorem. For any subfield k C R, the map ¢
is a bijection:

Tr(k) = 8(k).

Proof. We only have to prove that the map
is injective. So assume that E, = E|, over k, t, t’
€ Tr(k). Then the isomorphism is, a fortiori, de-
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fined over R, and our assertion follows from

(2.3), Q.ED.
. 6
Tr(k) - S, (k)
(2.5) N y
> %
&(k)

Now that we have two bijections 9, J), we
get the third bijection automatically. However, we
prefer to find a bijection ¢@:8(k) =3 S, (k) so
that the diagram (2.5) becomes commutative.

§3. & and S,. When an elliptic curve of
the form
(3.1) Y’=X*+PX’+QX,P,Q<E R, Q<0,
is considered, the quantity A is handier than the
invariant . It is defined by
(3.2) A=N/M<O0
where M, N are determined by the condition
(3.3) V'=X+PX*+ QX=XX+MX+N),

M>0, N<O.

For a subfield k€ R and t= (a, b, ¢) €
Tr(k), each member E,, etc., of the triple E, €
8(k) is certainly of type (3.1) and so we can
speak of the quantity
(3.4) A, = A(E,) = (P, — bo)/(P, + bc)
= — (1 — cos A)/(1 + cos A) = — tan’(4/2),
similarly for b, c.

Call ¢ the map 8(k) — k° given by

(3.5) o(E) = (— 2, — A, — ).
In view of (2.4), (3.4),~go induces a map
(3.6) 3:8k) — K.

Furthermore, by (1.6), we find 6 = (bgi) and hence
we have proved
(3.7) Theorem. The map ¢ gives a bijection:
E(k) = S, (k).

§4. A special case. For a subfield £k © R,
let us define a subset of T7(k) given by
4.1) Tr(k)y = {t=(a, b, ¢) € Tr(k) ; A, € k},
where 4, = A = the area of t = (s(s — a)(s — b)

(s — c))% _1 bcsinA. Since tan(A/2) = A/
2

(s(s — a)), etc., already belong to k, we can sim-
plify the description of T7y(k). We can replace
the quartic surface S, (k) by a quadric surface
(4.2)

C,(k) = {(u, v, w) € k,°; uv + vw + wu = 1).
One modifies the diagram (2.5) as follows:
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T
Try (k) = C, (k)
(4.3) X o

where 7 : Try (k) — C, (k) is given by

(4.4) () = (tan(A4/2), tan(B/2), tan(C/2)).
All other notation in (4.3) should be self-
explanatory and the proof goes similarly as be-
fore.

Examples and comments. When k = @, ele-
ments of T7,(Q) are called “rational triangles”
or “Heron triangles” ([1] Chap. V). Heron of Alex-
andria noted that #= (13, 14, 15) belongs to
Tr,(Q) with A = 84. By our map (4.4) it corres-
ponds to the point (1/2, 4/7, 2/3) of the quadric
C,(Q). On the other hand, by our map (1.6) it
corresponds to the point (1/4, 16/49, 4/9) of the
quartic S, (Q).

Obviously, every right triangle t = (a, b, ¢)
€ Tr(k) belongs to Try(k). Assume that C =
7/2; hence @’ + b= ¢*. Then (&) = (a/(b+ ¢),
b/a+¢),1) and 6@ = @ /b+ ) b°Na+ 0,
1). In both cases the image of right triangles with
C = 7w /2 is the intersection of the surface in k+3
and the plane z = 1 (or w = 1).

Needless to say, all equilateral triangles ¢ =
(a, a, a), a € k,, are similar and so they cor-
respond to a single point in the quartic surface.
If k does not contain 3%, then ¢ & Try(k) because
A, = 3t/8a.

§5. An involution.

put
(5.1) ¢ =(a, b, ) witha = a(s — a),

b=bs—b), ¢ =cls—0),s=5la+b+0o.

For t= (a, b, ¢) € Tr(k),

Then one finds
(5.2) ss—a=G—b—0,s—b=6—0
s—a),s—c=6—als—0b),

with s" = % (@ + b+ ¢). By (5.1), (5.2), we

obtain a map: T7(k) — Tr(k). Furthermore, for
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the image ¢’ = (a@”, b”, ¢”) of v = (a’, b, ),
we get

(5.3) a”=a'(s"—a) =ad, b = bd, ¢” = cd,

withd=(s—a)(s— b — o).

In other words, we have t” ~ t and so the map
¢+ ¢ induces an involution * of 77(k). The only
fixed point of * is the class of equilateral triang-
le. By the diagram (2.5), we can transplant * on
S, (k) and &(k). On the surface S,(k), the in-
volution P = (z,y, 2) =» P = (z*, y* 2% is
determined by the relation:

* * * 1
(5.4) xx =yy =2z = (zyz)/(x(y2)?
1 1
+ y(zp)z + 2(xy)2).
Example (Heron). Let k= @ and ¢t = (a,

b, ¢) = (13, 14, 15) € Tr(Q). We have s = 21,
s—a=8,s—b=7,s—c=6,4=(s(s—a)
(s— b — c))% = 84, hence t € Try(Q). Next,
by (5.1), we have ¢ = (a’; ¥, ) = (104,
98, 90), s’ = 146 and (4)? = 16482816 = 2° -
3> 7. 73, which means that ¢’ & T7,(Q) ; in
other words, the involution * of 77(Q) does not
respect the subset T;’H(Q). Passing to the surface
S.(Q), we have
o) = (1/2% 2/7%, 22/3%
o()* = (2°/73, 7°/(2-73), (2-3%)/73).
As for triples of elliptic curves, denoting by
[P, Q] for the curve of type (3.1), we have
E, = (E, E,, E)= ([126, — 8471, [99, ],
[70, 1),
E* = (E,, E,, E,)= ([3444, — 2°-3"
7*-73], (4656, -1, [6160, -1).
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I take this opportunity to make a correction to my
paper (VI). On p. 186, in (4.6), z° + 4x2® — 3z should
read 2° + 22° — 3z.



