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Triangles and Elliptic Curves. VII

By Takashi ONO
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(Communicated by Shokichi IYANAGA, M. J. A., Feb. 13, 1996)

This is a continuation of series of papers [2]
each of which will be referred to as (I), (II), (III),
(IV), (V), (VI) in this paper, in (VI) we considered
exclusively real triangles t (a, b, c) and
showed that there is a 1-1 correspondence be-
tween the classes of similarity of t’s and the iso-
morphism classes of triples Et’s of elliptic
curves. In this paper, we pursue the same theme
for those objects rational over any subfield k of
R. This time, we shall introduce a third object (a
quartic surface over Q) in addition to triangles
and elliptic curves to clarify the matter.

1. Tr and S+. As in (VI), we begin with
the set
(1.1) Tr-- {t-- (a, b, c) R3" O < a < b+ c

0< b< c+ a, 0 < c<a+ b}.
For t, t" Tr, we write t t’ if they are simi-

lar, i.e., if t- rt’ for some r e R. For any sub.
field k c R, put
(1.2) Tr(k) Tr k.
If tN t’, t, t’ Tr(k), note that t= rt’ with
r k. So we can speak of the embedding
-(k) c T’ of quotients in the obvious way.

Next, we consider the set
(1.3) S+ {P (x y z) R ;x, y, z > 0,

(xy) + (yz) + (zx) 1),
where (and hereafter) we assume that a > 0
when a > 0. On rationalizing the defining rela-
tion in (1.3), we have

3. 1 > xy + yz + zx(1.4) S+ (PR+,
(1 xy yz zx) 4 (x+ y+ z) xyz 8xyz 0},
where (and hereafter) we put, for k c R, k+
{a k a > 0}.

For k c R, we put
(1.5) S+ (k) --S+ (? k3.

Let A, B, C be angles of t-- (a, b, c) so
that A is between sides b and c; similarly for B,
C. Call 0 a map" Tr --- R+ given by
(1.6) 0(t) (tank(A/2), tank(B/2), tan(C/2)).
Since 0 is defined by angles only, it induces a

map t" "r--- Ra+.
(1.8) Theorem. For any subfield k R, the map

induces a bqection"
"(k) S+ (k).

Proof By abuse of notation, put
(1.9) f(a) tanc,
Note that f is a monotone increasing function
with range (0,-+-oo) which satisfies the func-
tional equation
(1.10) f c) f r /2 c) 1, c I,
and the (stronger form of) addition formula
(1.11) f(a)f(fl) +f(fl)f(’) +f(r)f(a) 1

Now let t-- (a, b, c) Tr and A, B, C be
angles of t as above. Putting A/2, fl- B/2,- C/2 in (1.9), (1.11), we find that the point
O(t) f (a) f (fl) f (?’) ) belongs to S+
It is obvious that 0(t)= O(t’)implies t t’.
Hence the map 0" Tr--* S+ is injective. Next, for
a subfield k R, let t- (a, b, c) Tr(k).
Then cos A (b+ c -a)/2bc belongs to k
and so does f(c) (1-- cosA)/(1 + cosA)
similarly for f(fl)2, f(’). Hence t induces an in-

jection ’(k)--* S+(k). Finally, it remains to
show that this map is surjective. So take any
point P-- (x, y, z) S+(k). By (1.11), we can
find angles A, B, C, 0 A, B, C zr so that A
+B+ C= 7c and that x=f(a) , y--f(fl)e,
z f(7") , where cr A/2, etc. Choose a triangle
t (a, b, c) Tr with angles A, B, C such
that c--1. (In case t happens to be a right
triangle, we may assume without loss of general-
ity that C 7/2, i.e., c the hypotenuse of t
1.) Note that cos A (1 f(cr))/(1 + f(a) )

(1 --x)/(1 -+- x) k; similarly cos B, cos C
k. On the other hand, though sin A

2f(a)/(1 + f(a) ) may not belong to k in gene

ral, note also that sinA- 4x/(1 +x) k;
similarly for sinB, sinC. On squaring each
term of the sine formula, we have

(1.1 1) a2/sinA b/sinB 1/sinC,
so we see that a, belong to k. Since cosA,
cos B are both non-zero elements of k (by our
assumption on the angle C), the cosine formulas
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2 b 1 + 2a cos Ba + 1- 2bcosA, b a
imply that t- (a, b, c) Tr(k) with O(t) P.

Q.E.D.
2. Tr and $. In (VI) 3, we associated to

each t Tr an ordered triple Et
Ec) of elliptic curves defined over R"

E Y =x +Pax + QX,
1 .),P,=-(b + c a

(2.1) Eb" Y x + Px + QX,
1

aP -ff (c + b)

x + Px + OX,
1

bP -ff (a + c)

1
b4 4

16 (a4+ +cwith Q (area of t)

2ab 2bc 2caaa).
Let us denote by g the set of all Et, t Tr,

and call the map Tr- g given by
(2.2) (t) Et, t Tr.
For t- (a, b, c), t’= (a’, b’, c’) Tr, triples

Et, Et, are said to be isomorphic over R (written

Et " Et,) if Ea, E, Ec are isomorphic over R to

Ea,, E,, Ec,, respectively. In this situation, we
know that
(2.3)(VI, (3.5)) t t’ E - Et,, t, t’ Tr.
For a subfield k c R, if t (a, b, c) Tr(k)
then elliptic curves Ea, E, E are all defined
over k. Denote by g(k) the set of all Et, t
Tr(k). The map induces a map (written
again) Tr(k)-- g(k). For t, t’ Tr(k), the iso-

morphism Et Et, over k is defined in the ob-
vious way. Assume now that t t’, t, t’
Tr(k) so t- rt’, r k. Since Pa, Q are forms
in Q[a, b, c] of degree 2,4, respectively, we
have Pa(t) raPa(t’), Q(t) r4Q(t’). Then the

X rmap (X, Y) (r Y) induces an isomorph-
ism Ea Ea, over k; similarly for Eb, Ec. De-
note by o(k) the quotient of g(k) defined by isoo
morphisms over k. Then the map induces a

map " "(k)- o(k) which is surjective by the
definition of $(k).
(2.4)Theorem. For any subfield k R, the map
is a bijection"

T’r(k) -- g (k)
Proof. We only have to prove that the map

is injective. So assume that Et - Et, over k, t, t’
Tr(k). Then the isomorphism is, afortiori, de-

fined over R, and our assertion follows from
(2.3), Q.E.D.

"(k) "; S+(k)

$(k)

Now that we have two bijections 0, , we
get the third bijection automatically. However, we
prefer to find a bijection qS"$(k) S+(k) so

that the diagram (2.5) becomes commutative.
[}3. $ and S+. When an elliptic curve of

the form
(3.1) Y X + PX + QX, P, Q R, Q < O,
is considered, the quantity / is handier than the
invariant j. It is defined by
(3.2) N/M < 0
where M, N are determined by the condition
(3.3) Y= X + PX + VX X(X+ M) (X + N),

M>0, N<0.
For a subfield k R and t-- (a, b, c)

Tr(k), each member Ea, etc., of the triple Et
$(k) is certainly of type (3.1) and so we can

speak of the quantity
(3.4) 2a /(Ea) (Pa- bc)/(Pa + bc)

(1- cosA)/(1 +cosA) --tan2(A/2),
similarly for b, c.
Call p the map $(k) ---* k3

given by
(3.5) (E,) (- a, , ).
In view of (2.4), (3.4), p induces a map

(3.6) qS" o(k) - k.
Furthermore, by (1.6), we find )= qS and hence
we have proved
(3.7) Theorem. The map gives a bijection"

(k) -- S+ (k).
4. A special ease. For a subfield k R,

let us define a subset of Tr(k) given by
(4.1) Tr(k)H {t (a, b, c) Tr(k) At k},
where A --A- the area of t---- (s(s- a)(s- b)

1
(s c)) 1/2 =- bcsinA. Since tan(A/2) A

(s(s- a)), etc., already belong to k, we can sim-

plify the description of TrH(k). We can replace
the quartic surface S+(k) by a quadric surface
(4.2)
C+(k) ( (u, v, w) k+" uv + vw + wu 1)

One modifies the diagram (2.5) as follows:



No. 2] Triangles and Elliptic Curves. VII 33

TrH (k) ". C+ (k)

$H(k)

where v’TrH(k)---* C+(k) is given by
(4.4) v(t) (tan(A/2), tan(B/2), tan(C/2)).
All other notation in (4.3) should be self-
explanatory and the proof goes similarly as be-
fore.

Examples and comments. When k Q, ele-
ments of TrH(Q)are called "rational triangles"
or "Heron triangles" ([1] Chap. V). Heron of Alex-
andria noted that t--(13, 14, 15)belongs to

TrH(Q) with A 84. By our map (4.4) it corres-
ponds to the point (1/2, 4/7, 2/3) of the quadric

C+(Q). On the other hand, by our map (1.6) it

corresponds to the point (1/4, 16/49, 4/9) of the
quartic S+ (Q).

Obviously, every right triangle t-- (a, b, c)
Tr(k)belongs to TrH(k). Assume that C--

2 b cr/2" hence a -b Then v(t) (a /(b -b c),
b/(a -+- c), 1) and 0(t) (a2/(b -+- c) 2 b2/(a -b c)
1). In both cases the image of right triangles with
C r/2 is the intersection of the surface in k+
and the plane z 1 (or w 1).

Needless to say, all equilateral triangles t
(a, a, a), a k+, are similar and so they cor-
respond to a single point in the quartic surface.

If k does not contain 37, then t Tru(k) because

A (3 / 4) a.
5. An involution. For t- (a, b, c) Tr(k),

put
(5.1) t’: (a’, b’, c’) with a" a(s- a),

1
b"= b(s- b), c’= c(s- c), s =-(a + b + c).

Then one finds
(5.2) s’--a’-- (s--b)(s--c), s’-- b’= (s-c)

(s- a), s’- c’= (s- a)(s- b),

with s’
1

b’-- (a’+ + c’). By (5 1) (5.2), we

obtain a map: Tr(k)-- Tr(k). Furthermore, for

the image t" (a", b", c") of t’= (a’, b’, c’),
we get
(5.3) a" a’(s’-- a’) ad, b" bd, c"- cd,

with d (s- a)(s- b)(s- c).
In other words, we have t" t and so the map
t t’ induces an involution * of Tr(k). The only
fixed point of * is the class of equilateral triang-
le. By the diagram (2.5), we can transplant * on

S+(k) and (k). On the surface S+(k), the in-
volution P= (x,y, z) P= (x* * *),y ,z is

determined by the relation:
(5.4) xx yy zz (xyz)/(X(yz)-

+ y(zx) + z(xy)).
Example (Heron). Let k Q and t-(a,

b, c) (13, 14, 15) Tr(Q). We have s 21,
s--a=8, s--b-7, s-- c= 6, A (s(s- a)

(s- b)(s- c)) 84, hence t TrH(Q). Next,
b’ c’)-- (104by (5 1), we have t’ (a’

98, 90), s"= 146 and (A’)= 16482816 2"32. 72. 73, which means that t’ @ TrH(Q) in

other words, the involution * of "-(Q) does not

respect the subset rH(Q). Passing to the surface
S+(Q), we have

O(t) (1/2, 24/72, 22/3)
O(t)*= (2/73, 73/(2"73), (2"3)/73).

As for triples of elliptic curves, denoting by
[P, Q] for the curve of type (3.1), we have
E (E, E, E) ([126, 84], [99, ,,],

[70, ,,]),
Et* (Ea,, Eb,, Ec,)= ([3444, 2’32.

7’73], [4656, ,.], [6160, ,.]).
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take this opportunity to make a correction to my

paper (VI). On p. 186, in (4.6), x -+- 4x2- 3x should

read x -b 2x2- 3x.


