On Some Examples of Modular QM-abelian Surfaces

By Yuji HASEGAWA
Department of Mathematics, Waseda University
(Communicated by Shokichi IyANAGA, M. J. A., Jan. 12, 1996)

1. Introduction. Let $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ be a (normalized) newform of weight two on $\Gamma_{0}(N)$ with trivial Nebentypus character such that the field of Fourier coefficients $K_{f}:=$ $\boldsymbol{Q}\left(\left\{a_{n}\right\}_{n=1}^{\infty}\right)$ is a (real) quadratic field. Let A_{f} denote the associated abelian surface over \boldsymbol{Q} ([12], [13]). Then, $\operatorname{End}_{\boldsymbol{Q}}\left(A_{f}\right) \otimes \boldsymbol{Q}$, the \boldsymbol{Q}-algebra of endomorphisms of A_{f} over \boldsymbol{Q}, is exactly K_{f}. Let \mathfrak{X}_{f} denote the \boldsymbol{Q}-algebra of all endomorphisms of $A_{f}: \mathfrak{X}_{f}=\operatorname{End}_{\overline{\boldsymbol{Q}}}\left(A_{f}\right) \otimes \boldsymbol{Q}$. If f is a form with complex multiplication, i.e., if there is a Dirichlet character $\psi \neq 1$ such that $a_{p}=\phi(p) a_{p}$ for all $p \nmid N$, then $A_{f} / \overline{\boldsymbol{Q}}$ is the product of two copies of an elliptic curve with complex multiplication by some imaginary quadratic field k, so that $\mathfrak{X}_{f}=$ $\mathrm{M}_{2}(k)$. In the following, we always assume that f does not have complex multiplication (and that K_{f} is a real quadratic field). Then \mathfrak{X}_{f} is either K_{f}, $\mathrm{M}_{2}(\boldsymbol{Q})$, or the quaternion division algebra B_{D} over \boldsymbol{Q} with discriminant $D>1$ (see [7], [8]). We say that A_{f} has quaternion multiplication (or simply QM) if $\mathfrak{X}_{f}=B_{D}$ for some D.

Definition. Let $f=\sum a_{n} q^{n}$ be as above and let χ be a (primitive) Dirichlet character. Then f is said to possess the extra twist by χ if the equality

$$
a_{p}^{\sigma}=\chi(p) a_{p}
$$

holds for all $p \nless N$, where σ is the non-trivial automorphism of K_{f} / \boldsymbol{Q}. In this case, we say that χ is a twisting character of f.

Let f be a newform on $\Gamma_{0}(N)$ satisfying our assumption. Then $f^{\sigma}:=\sum a_{n}{ }^{\sigma} q^{n}$ is also a newform on $\Gamma_{0}(N)$. Further, if χ is any primitive quadratic Dirichlet character of conductor r, then $f^{\chi}:=\sum a_{n} \chi(n) q^{n}$ is a cuspform on $\Gamma_{0}\left(N^{\prime}\right)$, where N^{\prime} is the least common multiple of N and r^{2}. See [13] for general background.

Now let f be a newform on $\Gamma_{0}(N)$ which possesses the extra twist by χ, say. Then χ is quadratic and the square of the conductor of χ divides N, and in fact $f^{\sigma}=f^{\chi}$. It is also easily seen that χ is a unique twisting character of f,
since f is a form without complex multiplication.
Proposition 1. Let f possess the extra twist by χ. Then

$$
\mathfrak{X}_{f}=\left(\frac{d, \chi(-1) r}{\boldsymbol{Q}}\right)
$$

where $\left(\frac{a, b}{\boldsymbol{Q}}\right)$ is the quaternion algebra over \boldsymbol{Q} with reduced norm form $x^{2}-a y^{2}-b z^{2}+a b w^{2}, d$ is the discriminant of K_{f} and r is the conductor of χ.

Proof. This is a special case of a result of [7], [8].

If f does not possess the extra twist, it is known that $\mathfrak{X}_{f}=K_{f}$.

Proposition 2. Let A_{f} be an abelian surface attached to a newform f of weight two on $\Gamma_{0}(N)$ and assume that A_{f} has $Q M$. Let p be a prime divisor of N with $p^{\nu} \| N$. Then
(1) $2 \leq \nu \leq 10$ if $p=2$,
(2) $2 \leq \nu \leq 5$ if $p=3$,
(3) $\nu=2 \quad$ if $p \geq 5$.

Furthermore, N is divisible by 2^{5} or by the square of some prime p such that $p \equiv 3(\bmod 4)$.

Proof. By assumption, f possesses the extra twist. If N is exactly divisible by a prime, then $\mathfrak{X}_{f}=\mathrm{M}_{2}(\boldsymbol{Q})$ by [9], Theorem 2. So $\nu \geq 2$ if A_{f} has QM. Put

$$
s=\left\lceil\frac{\nu}{2}-1-\frac{1}{p-1}\right\rceil
$$

where $\lceil x\rceil$ is the least integer $\geq x$. Then by [3], Theorem 5.5, the center of \mathfrak{X}_{f} contains $\boldsymbol{Q}(\zeta+$ $\left.\zeta^{-1}\right)$ if $p>2$ (resp. $\boldsymbol{Q}\left(\zeta^{2}+\zeta^{-2}\right)$ if $p=2$), where ζ is a primitive p^{s}-th root of unity, hence we obtain the estimate for ν. The last part follows from [9], Theorem 3 and [1], Theorem 7.

An example of a QM -abelian surface attached to a newform of weight two on $\Gamma_{0}(N)$ is given by Koike [6]. In this case the level is $243=3^{5}, K_{f}=\boldsymbol{Q}(\sqrt{6}), \chi=\left(\frac{-3}{\cdot}\right)$ and $\boldsymbol{X}_{f}=$ $\left(\frac{6,-3}{\boldsymbol{Q}}\right)=B_{6}$. Since there are, as it seems, no other known examples, it might be interesting to find other examples of modular QM -abelian sur-
faces.
2. Results for $\mathbf{3 0 1} \leq \boldsymbol{N} \leq \mathbf{2 0 0 0}$. Let N be an integer with $301 \leq N \leq 2000$ satisfying the conditions of proposition 2. There are thirty-four such N 's. For each of those N 's, we have decom-
posed $S_{2}^{0}(N)$, the space of newforms of weight two on $\Gamma_{0}(N)$, into \boldsymbol{Q}-simple factors by means of trace formulas of Hecke operators ([5], [14], [10]). These are summarized inTable I.

Table I. \boldsymbol{Q}-simple splitting of $S_{2}^{0}(N)$

$N=\Pi p^{\nu}$	splitting of $S_{2}^{0}(N)$
$324=2^{2} 3^{4}$	$\left(0,0,1^{3}, 1\right)$
$361=19^{2}$	$\left(1 \cdot 3 \cdot 4,1 \cdot 2^{4} \cdot 3\right)$
$392=2^{3} 7^{2}$	$\left(1,1^{2} \cdot 2,1 \cdot 2,1^{2}\right)$
$432=2^{4} 3^{3}$	$\left(1,1^{3}, 1^{2}, 1^{2}\right)$
$441=3^{2} 7^{2}$	$\left(1,1 \cdot 2^{2}, 1 \cdot 2^{2}, 1^{3}\right)$
$484=2^{2} 11^{2}$	$\left(0,0,2^{3}, 1 \cdot 2\right)$
$512=2^{9}$	$\left(2^{3}, 2^{3} \cdot 4\right)$
$529=23^{2}$	$\left(4^{2} \cdot 5,2^{5} \cdot 3 \cdot 5\right)$
$576=2^{6} 3^{2}$	$\left(1,1^{3}, 1^{3}, 1^{2}\right)$
$648=2^{3} 3^{4}$	$\left(1^{2} \cdot 2,2^{2} \cdot 1^{3} \cdot 2,2^{4} \cdot 2^{2}, 1 \cdot 2^{2}\right)$
$675=3^{3} 5^{2}$	$\left(1^{2} \cdot 2,1^{4} \cdot 2,1 \cdot 2^{2}, 1^{3}\right)$
$784=2^{4} 7^{2}$	$\left(1^{3}, 1^{2} \cdot 2^{2}, 1^{2} \cdot 2^{2}, 1^{2} \cdot 2\right)$
$800=2^{5} 5^{2}$	$\left(1^{3}, 1^{3} \cdot 2,1^{3} \cdot 2,1^{3}\right)$
$864=2^{5} 3^{3}$	$\left(0,0,0,0,1^{2}, 1,1^{2}, 1^{3}\right)$
$900=2^{2} 3^{2} 5^{2}$	$\left(2^{2} \cdot 8 \cdot 16,2^{4} \cdot 3 \cdot 4 \cdot 8 \cdot 12\right)$
$961=31^{2}$	$\left(1 \cdot 2^{2}, 1 \cdot 2^{2} \cdot 4,1 \cdot 2 \cdot 4,1^{2} \cdot 2^{2}\right)$
$968=2^{3} 11^{2}$	$\left(0,0,1^{2} \cdot 2 \cdot 3,1^{2} \cdot 3\right)$
$972=2^{2} 3^{5}$	

The second column must be read as in [2]. Here we adopt the multiplicative notation instead of the additive one. There are 154 twodimensional \boldsymbol{Q}-simple subspaces (and thus 154 \boldsymbol{Q}-simple abelian surfaces) in Table I, among which there are only ten (essentially six) subspaces such that the corresponding abelian surface has QM, as explained below.
(1) Let $N=675=3^{3} \cdot 5^{2}$. In this case, dim $S_{2}^{0}(675)=25$, and there are 4 newforms in S_{2}^{0} (675) such that the field of Fourier coefficients is $\boldsymbol{Q}(\sqrt{2})$. Let $f=\sum a_{n} q^{n}$ be one of these. Other three forms are obtained by twisting f by $\chi_{3}=\left(\frac{-3}{\cdot}\right), \chi_{5}=\left(\frac{5}{\cdot}\right), \chi_{15}=\left(\frac{-15}{\cdot}\right)$, respec. tively. Further, $f^{\sigma}=f^{(3)},\left(f^{(5)}\right)^{\sigma}=f^{(15)}$, where

$N=\Pi p^{\nu}$	splitting of $S_{2}^{0}(N)$
$1024=2^{10}$	$\left(2^{2} \cdot 4^{2}, 2^{4} \cdot 4^{2}\right)$
$1089=3^{2} 11^{2}$	$\left(2 \cdot 4,1^{4} \cdot 2^{2} \cdot 4,1 \cdot 2^{4} \cdot 4,1^{6} \cdot 2^{2}\right)$
$1152=2^{7} 3^{2}$	$\left(1^{4}, 1^{7}, 1^{4}, 1^{5}\right)$
$1225=5^{2} 7^{2}$	$\begin{gathered} \left(2^{3} \cdot 3 \cdot 4,1^{4} \cdot 2^{4} \cdot 3\right. \\ \left.1^{2} \cdot 2^{2} \cdot 3 \cdot 4^{2}, 1^{4} \cdot 2^{3} \cdot 3\right) \end{gathered}$
$1296=2^{4} 3^{4}$	$\left(1^{3} \cdot 2,1 \cdot 2^{3}, 1^{6}, 1^{2} \cdot 2\right)$
$1323=3^{3} 7^{2}$	$\begin{gathered} \left(1 \cdot 3 \cdot 4^{2}, 1^{9} \cdot 2^{2} \cdot 3\right. \\ \left.1^{2} \cdot 2 \cdot 3 \cdot 4^{2}, 1^{7} \cdot 2 \cdot 3\right) \end{gathered}$
$1444=2^{2} 19^{2}$	($0,0,1 \cdot 2 \cdot 6 \cdot 8,1^{2} \cdot 2^{2} \cdot 6$)
$1521=3^{2} 13^{2}$	$\left(1^{2} \cdot 2 \cdot 6,2 \cdot 4^{2} \cdot 6,1^{3} \cdot 2^{3} \cdot 3^{3}, 2^{3} \cdot 3^{3}\right)$
$1568=2^{5} 7^{2}$	$\left(2^{4}, 1^{6} \cdot 2^{3}, 2^{4} \cdot 4,1^{3} \cdot 2^{3}\right)$
$1600=2^{6} 5^{2}$	$\left(1^{8}, 1^{6} \cdot 2^{2}, 1^{5} \cdot 2^{2}, 1^{6} \cdot 2\right)$
$1728=2^{6} 3^{3}$	$\left(1^{5} \cdot 2,1^{7} \cdot 2,1^{9}, 1^{7}\right)$
$1764=2^{2} 3^{2} 7^{2}$	($0,0,0,0,1 \cdot 4,1^{2}, 1^{2} \cdot 2,1^{6}$)
$1800=2^{3} 3^{2} 5^{2}$	$\left(1^{2}, 1^{3}, 1^{4}, 1^{3}, 1^{2}, 1^{3}, 1^{3}, 1^{4}\right)$
$1849=43^{2}$	$\begin{gathered} \left(1^{2} \cdot 2^{2} \cdot 3^{2} \cdot 10 \cdot 18 \cdot 20\right. \\ \left.1^{2} \cdot 2^{2} \cdot 3^{2} \cdot 18 \cdot 20^{2}\right) \end{gathered}$
$1936=2^{4} 11^{2}$	$\left(1^{2} \cdot 2^{3} \cdot 4,1^{3} \cdot 2^{4} \cdot 4,1 \cdot 2^{6}, 1^{6} \cdot 2^{2}\right)$
$1944=2^{3} 3^{5}$	$\left(1^{2} \cdot 2^{2} \cdot 3,1^{3} \cdot 6,1^{2} \cdot 2^{2} \cdot 6,1^{3} \cdot 3\right)$

σ is the non-trivial automorphism of K_{f} / \boldsymbol{Q}, $f^{\sigma}=\sum a_{n}{ }^{\sigma} q^{n}$ and $f^{(r)}=\sum a_{n} \chi_{r}(n) q^{n}$. Hence f and $g=f^{(5)}$ possess the extra twist by χ_{3}. Since $\boldsymbol{X}_{f}=\mathfrak{X}_{g}=\left(\frac{2,-3}{\boldsymbol{Q}}\right)=B_{6}, A_{f}$ and A_{g} are QM_{-} abelian surfaces. Note that A_{g} is "essentially" the same with A_{f} in the sence that A_{g} is obtained by twisting A_{f} by χ_{5}. We list below Fourier coefficients a_{p} of f for $p \leq 173$ (Table II), and characteristic polynomials $\Phi_{T(p)}(X)$ of Hecke operators $T(p)$ on each \boldsymbol{Q}-simple subspace of $S_{2}^{0}(675)$ for prime $p \leq 19$ (Table III). In that table, signatures $(+,+)$ etc. indicate the signatures of eigenvalues of Atkin-Lehner's involutions W_{27} and W_{25} ([1]).

Table II. Fourier coefficients of $f=\sum a_{n} q^{n}$

p	2	3	5	7	11	13	17	19	23	29
a_{p}	$\sqrt{2}$	0	0	3	$3 \sqrt{2}$	3	$-2 \sqrt{2}$	1	$5 \sqrt{2}$	$-3 \sqrt{2}$
p	31	37	41	43	47	53	59	61	67	71
a_{p}	2	9	$-3 \sqrt{2}$	6	$-2 \sqrt{2}$	$-7 \sqrt{2}$	$-6 \sqrt{2}$	-13	-3	$-9 \sqrt{2}$
p	73	79	83	89	97	101	103	107	109	113
a_{p}	9	-5	$-\sqrt{2}$	0	3	$-6 \sqrt{2}$	3	$-5 \sqrt{2}$	-8	$-\sqrt{2}$
p	127	131	137	139	149	151	157	163	167	173
a_{p}	-18	$6 \sqrt{2}$	$\sqrt{2}$	13	$12 \sqrt{2}$	-1	6	-9	$4 \sqrt{2}$	$-10 \sqrt{2}$

Table III. Characteristic polynomials $\Phi_{T(p)}(X)$ of $T(p) \mid S_{2}^{0}(675)$

	$(+,+)$			$(-,-)$		
$\Phi_{T(2)}(X)$	X	$X+1$	$X^{2}+X-3$	$X^{2}-2$	$X-1$	$X^{2}+3 X+1$
$\Phi_{T(7)}(X)$	$X-1$	X	$X^{2}+2 X-12$	$(X+3)^{2}$	X	X^{2}
$\Phi_{T(11)}(X)$	X	$X+5$	$X^{2}+2 X-12$	$X^{2}-18$	$X+5$	X^{2}
$\Phi_{T(13)}(X)$	$X+5$	$X-5$	$X^{2}+6 X-4$	$(X+3)^{2}$	$X+5$	X^{2}
$\Phi_{T(17)}(X)$	X	$X+4$	$X^{2}+4 X-9$	$X^{2}-8$	$X-4$	$X^{2}+12 X+31$
$\Phi_{T(19)}(X)$	$X+7$	$X+2$	$X^{2}-13$	$(X-1)^{2}$	$X+2$	$X^{2}+4 X-41$

	$(+,-)$				
$\Phi_{T(2)}(X)$	X	$X^{2}-2$	$X^{2}-7$	$X+1$	$X^{2}-3 X+1$
$\Phi_{T(7)}(X)$	$X+4$	$(X-3)^{2}$	$(X-3)^{2}$		
$\Phi_{T(11)}(X)$	X	$X^{2}-18$	$X^{2}-28$	$X-5$	X^{2}
$\Phi_{T(13)}(X)$	$X-5$	$(X-3)^{2}$	$(X+2)^{2}$	$X+5$	X^{2}
$\Phi_{T(17)}(X)$	X	$X^{2}-8$	$X^{2}-28$	$X+4$	$X^{2}-12 X+31$
$\Phi_{T(19)}(X)$	$X-8$	$(X-1)^{2}$	$(X-1)^{2}$	$X+2$	$X^{2}+4 X-41$

	$(-,+)$					
	$\Phi_{T(2)}(X)$	X	$X^{2}-7$	$X+2$	$X-2$	$X-1$
$X^{2}-X-3$						
$\Phi_{T(7)}(X)$	$X-4$	$(X+3)^{2}$	$X-3$	$X-3$	X	$X^{2}+2 X-12$
$\Phi_{T(11)}(X)$	X	$X^{2}-28$	$X-2$	$X+2$	$X-5$	$X^{2}-2 X-12$
$\Phi_{T(13)}(X)$	$X+5$	$(X-2)^{2}$	$X-5$	$X-5$	$X-5$	$X^{2}+6 X-4$
$\Phi_{T(1))}(X)$	X	$X^{2}-28$	$X+8$	$X-8$	$X-4$	$X^{2}-4 X-9$
$\Phi_{T(19)}(X)$	$X-8$	$(X-1)^{2}$	$X-1$	$X-1$	$X+2$	$X^{2}-13$

Table IV. Fourier coefficients of $f=\sum a_{n} q^{n}$

p	2	3	5	7	11	13	17	19	23	29
a_{p}	0	0	$3 \sqrt{2}$	2	$3 \sqrt{2}$	-1	$-3 \sqrt{2}$	5	$-3 \sqrt{2}$	$-6 \sqrt{2}$
p	31	37	41	43	47	53	59	61	67	71
a_{p}	-7	-4	$-6 \sqrt{2}$	5	0	$3 \sqrt{2}$	$-3 \sqrt{2}$	5	11	$-3 \sqrt{2}$
p	73	79	83	89	97	101	103	107	109	113
a_{p}	-1	11	$9 \sqrt{2}$	$-12 \sqrt{2}$	-7	$6 \sqrt{2}$	11	$-6 \sqrt{2}$	-1	0
p	127	131	137	139	149	151	157	163	167	173
a_{p}	-1	$3 \sqrt{2}$	$12 \sqrt{2}$	-10	$-3 \sqrt{2}$	-13	-7	14	$-18 \sqrt{2}$	0

(2) Let $N=972=2^{2} \cdot 3^{5}$. In this case, dim $S_{2}^{0}(972)=12$ and there is exactly one twodimensional \boldsymbol{Q}-simple factor. Let $f=\sum a_{n} q^{n}$ be (one of) the corresponding newforms. Then we can see that $K_{f}=\boldsymbol{Q}(\sqrt{2})$ and f possesses the extra twist by $\left(\frac{-3}{\cdot}\right)$; that is, A_{f} is a QMabelian surface with $\mathfrak{X}_{f}=\left(\frac{2,-3}{\boldsymbol{Q}}\right)=B_{6}$, as in the case $N=675$. We only include a table of Fourier coefficients of f for $p \leq 173$ (Table IV above) and we will omit that of characteristic polynomials.
(3) There are other examples of modular QM-abelian surfaces such that $\mathfrak{X}_{f}=B_{6}$ for $N=$ 1323,1568 (two factors in each) and $N=1849$
(one factor). First few a_{p} 's for the corresponding f are given in Table V , in which χ is the twisting character of $f=\sum a_{n} q^{n}$, and the "sign" is the signature of eigenvalues of Atkin-Lehner's involutions. Note that for $N=1323$ and $N=$ 1568, one of A_{f} is obtained by twisting the other by $\left(\frac{-7}{\cdot}\right)$.
(4) We have also found examples of modular QM-abelian surfaces such that $\mathfrak{X}_{f} \neq B_{6}$. More precisely, there are two factors such that $\mathfrak{X}_{f}=$ B_{14} in $S_{2}^{0}(1568)$. First few a_{p} 's for the corresponding f are given in Table VI; χ and the "sign" are as in (3). Also, in this case, one of A_{f} is obtained by twisting the other by $\left(\frac{-7}{\cdot}\right)$.

Table V. Fourier coefficients of $f=\sum a_{n} q^{n}$

$N=\Pi p^{\nu}$	χ	sign	a_{2}	a_{3}	a_{5}	a_{7}	a_{11}	a_{13}	a_{17}
$1323=3^{3} 7^{2}$	$\left(\frac{-3}{\cdot}\right)$	$(+,-)$	$\sqrt{6}$	0	$-\sqrt{6}$	0	$2 \sqrt{6}$	4	$\sqrt{6}$
	$(-,+)$	$\sqrt{6}$	0	$\sqrt{6}$	0	$2 \sqrt{6}$	-4	$-\sqrt{6}$	
$1568=2^{5} 7^{2}$	$\left(\frac{-4}{\cdot}\right)$	$(-,+)$	0	$\sqrt{3}$	1	0	$3 \sqrt{3}$	0	5
	$(-,-)$	0	$-\sqrt{3}$	-1	0	$3 \sqrt{3}$	0	-5	

Table VI. Fourier coefficients of $f=\sum a_{n} q^{n}$

$N=\Pi p^{\nu}$	χ	sign	a_{2}	a_{3}	a_{5}	a_{7}	a_{11}	a_{13}	a_{17}
$1568=2^{5} 7^{2}$	$\left(\frac{-4}{\cdot}\right)$	$(+,+)$	0	$\sqrt{7}$	-3	0	$-\sqrt{7}$	-4	1
	$(+,-)$	0	$-\sqrt{7}$	3	0	$-\sqrt{7}$	4	-1	

3. Additional results. We have the complete list of modular QM-abelian surfaces over \boldsymbol{Q} for $N \leq 3000$. There are 8 two-dimensional \boldsymbol{Q}-simple subspaces in the range $2001 \leq N$ ≤ 3000 such that the corresponding abelian surface has QM ; namely, four cases in $N=2592$, and two cases in $N=2601$ and in $N=2700$. They have QM by B_{6} except when $N=2700$. It is, however, worth mentioning that there appear
various combinations of $(d, \chi(-1) r)$ such that $\left(\frac{d, \chi(-1) r}{\boldsymbol{Q}}\right)=B_{6}$ (see section 1 for notation). Here we only include a table of first few Fourier coefficients for $N=2700$ (Table VII); in this case, $\mathfrak{X}_{f}=\left(\frac{10,-3}{\boldsymbol{Q}}\right)=B_{10}$, and one of A_{f} is obtained by twisting the other by $\left(\frac{5}{\cdot}\right)$.

Table VII. Fourier coefficients of $f=\sum a_{n} q^{n}$

$N=\Pi p^{\nu}$	χ	sign	a_{2}	a_{3}	a_{5}	a_{7}	a_{11}	a_{13}	a_{17}
$2700=2^{2} 3^{3} 5^{2}$	$\left(\frac{-3}{\cdot}\right)$	$(-,+,-)$	0	0	0	-1	$\sqrt{10}$	-3	$-2 \sqrt{10}$
	$(-,-,-)$	0	0	0	1	$\sqrt{10}$	3	$2 \sqrt{10}$	

4. Remark. Let f be a newform such that its Nebentypus character is non-trivial and real quadratic. Then the corresponding abelian variety A_{f} is isogenous over $\overline{\boldsymbol{Q}}$ to $B \times B$ for some abelian variety B. Especially, if K_{f} is a CM-field of degree four, B is two-dimensional, and there is an example such that B is a QM -abelian surface (not defined over \boldsymbol{Q}), see [11].

Acknowledgement. I wish to thank Professor K. Yamamura for kindly providing me his program to compute the class numbers of imaginary quadratic fields, which runs very fast even for fields with huge discriminants.

References

[1] A. O. L. Atkin and J. Lehner: Hecke operators on $\Gamma_{0}(m)$. Math. Ann., 185, 134-160 (1970).
[2] A. O. L. Atkin and D. J. Tingley: Modular functions of one variable. IV. Lect. Notes in Math., vol. 476, Springer-Verlag, Berlin, New York, Table 5, pp. 135-141 (1975).
[3] A. Brumer: The rank of $J_{0}(N)$. Columbia University Number Theory Seminar, Astérisque, 228, 41-68 (1995).
[4] K. Hashimoto and N. Murabayashi: Shimura curves as intersections of Humbert surfaces and defining equations of QM-curves of genus two. Tôhoku Math. J., 47, 271-296 (1995).
[5] H. Hijikata: Explicit formula of the traces of Hecke operators for $\Gamma_{0}(N)$ J. Math. Soc. Japan, 26, 56-82 (1974).
[6] M. Koike: On certain abelian varieties obtained from new forms of weight 2 on $\Gamma_{0}\left(3^{4}\right)$ and $\Gamma_{0}\left(3^{5}\right)$. Nagoya Math. J. , 62, 29-39 (1976).
[7] F. Momose: On the l-adic representations attached to modular forms. J. Fac. Sci. Univ. Tokyo, 28, 89-109 (1981).
[8] K. Ribet: Twists of modular forms and endomorphisms of abelian varieties. Math. Ann., 253, 43-62 (1980).
[9] K. Ribet:Endomorphism algebras of abelian varieties attached to newforms of weight 2. Prog. ress in Math., 12, 263-276 (1981).
[10] H. Saito: On a decomposition of spaces of cusp forms and trace formula of Hecke operators. Nagoya Math. J. , 80, 129-165 (1980).
[11] G. Shimura: Class fields over real quadratic fields and Hecke operators. Ann. of Math., 95, 130-190 (1972).
[12] G. Shimura: On the factors of the jacobian varieties of a modular function field. J. Math. Soc. Japan, 25, 523-544 (1973).
'[13] G. Shimura: Introduction to the Arithmetic Theory of Automorphic Functions. Iwanami Shoten and Princeton Univ. Press (1971).
[14] M. Yamauchi: On the traces of Hecke operators for a normalizer of $\Gamma_{0}(N)$. J. Math. Kyoto Univ., 13, 403-411 (1973).

