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Division Polynomials of Elliptic Curves Over Finite Fields
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Abstract’ We consider an ellipic curve E over the finite field Fp for a prime p 4= 2,3.
We get the complete description of the pe-th division polynomials for any positive integer k
when E is supersingular. Also, we get a property of the division polynomials when E is
ordinary.
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Let p be a prime number 4= 2, 3 and q- p
for some positive integer It. Consider an elliptic
curve E over the finite field ’p given by a

Weierstrass equation"
2

g =z +Az+B; A,B F.
For any M (or, y) E() and an integer m,
the point mM is given by

( Cm( m(M)
mM

where m(M) and ( are relatively prime
polynomials in F,[M [31. Moreover, we have the
formula [1]: . (raM)

(1) mn(M) m(nn(m
Wm.(M) Cm( w.(m

for any positive integers m, n.
We say that E is supersingular over F if E

has no nontrivial p-torsion point in the algebraic

closure F of F. In this ease, ( is a

non-zero constant because (M) has no solution
in F. Otherwise, we say that E is ordinary over

F. From now on, every polynomial is considered
as an element of F[x].

Lemma 1. Suppose that E is supersingular
over &. Let M (x, y) E). Then

w( y
Proo From Eq. (1) and the definition of

w,(, it follows that
(M) (M) (2,
(M) 2(M)w(M).

Note that ,(M)= (2M)because ( is a

constant. Since (M) 2y, we get
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1
oo (M) - (M)pZ p

Theorem 1. Suppose that E is superdingular
over 1. Let M (z, y) E(’). Then

p. p
b (M) 1, (M) y ( z
Proof Since E is supersingular over ,

E()[ p + 1, i.e. Mo E() implies pMo

Mo. Let Mo (o, Yo) be a nontrivil ele-
ment of E(). Then

/ (Mo) (Mo)

Since w( =y we see (Mo)= --1. But
( is a constant, so that (M)a= 1.

_(?’m(M) w(M)
Since mM m);/x,,, is a point

of E, we get
,(M) )3+A ,( +B: ((

or
( A( ( + B " 0.

Using y =z +Ax+ B, it can be factored as

follows"
(3) ((M) (M)x’’) ((M)
+ (M)x’( (M)x-A() O.

If A 0, the second factor of Eq. (3) is

irreducible in F,[x] since its diseriminant equals
to ((3x + 4A), which is not a square in

F,[x]. If A 0, Eq. (3) is factored as follows"

(( (x)((M) ax)
((M) Bx) O,

if we let , be two roots of the equation t +
(t ( 0. In both the eases, ,(

p
x because the leading coefficient of (
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is 1. Hence we see Cp(Mo)2= 1 from Eq. (2),
which implies bp(M) 1 since (M)3

Corollary. Suppose that E is supersingular
over F. Let M (x, y) E(F). Then

Cq(M) (" 1) co,(M) =y ,(M) =x
Proof. Consider the following equalities’ For

any positive, integer a;.
a+l(M) Cpa(M) (pM)

(’(-- 1) (M)
w,+( ,(M)aw(pa

,(M)’y[p’ (
,+( ,(M)’(pa

,(’X[pa’ (.
Using these and induction on a, we get the corol-
lary.

Lemma 2. Suppose that q ln. Let M (x,
y) E(). Then (,( and yqwn(M)
are polynomials of x q.

Proofi Consider the k-th power Frobenius-
map

" E---* E (x, y) (x q, yq).
Since deg Ck q, the multiplication-by-q map
[q]" E-- E factors through [q] , so

that [n] [n/q] o . Hence
Cn(M)

and
,(M)

wn (M)
a y.

n(M)
are rational functions of x nd Since

(M) and n(M) are relatively prime polyno-
mials of x, Cn(M), n(M) e

and so Cn(M) are
polynomials of x. Since yqwn(M) is a polynomial
of x, it is also a polynomial of x. -]

Theorem 2. Suppose that E is ordinary over

F. Let M (x y) E(F) Then Cq(M)
g(x) for some seperable polynomial g(x)

q--1
f [x] of degree 2

Proof By Lemma 2, we know Cq(M)
q(x) for some polynomial g(x) F[x]. Since

q--1
E[q] Z/qZ, (M) has at least

distinct roots. Since deg Cq(M) <
q(q- 1) q 1

2 <- q deg g(x) < 2
degg(x)

q- 1
2 We are done.

2

Therefore
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