Gamelin Constants of Two-sheeted Discs

By Masaru HARA
Department of Mathematics, Meijo University
(Communicated by Kiyosi ITÔ, M. J. A., Nov. 12, 1996)

For any $0<\delta<1$ and n, an n-tuple $\left\{f_{j}\right\}$ of functions $f_{1}, \ldots ., f_{n}$ in the family $H^{\infty}(R)$ of bounded holomorphic functions on a Riemann surface R is referred to as a corona datum of index (n, δ) if the following condition is satisfied:
$\delta \leq\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2} \leq 1$.
An n-tuple $\left\{g_{j}\right\}$ of functions g_{1}, \ldots, g_{n} in $H^{\infty}(R)$ is said to be a corona solution of the datum $\left\{f_{j}\right\}$ if $\sum_{j} f_{j} g_{j}=1$. The quantity $C(R ; n, \delta)$ given by (2) $C(R ; n, \delta)=\sup _{\left\{f_{j}\right\}}\left(\inf _{\left\{g_{j}\right\}}\left(\sup _{p \in R}\left(\sum_{j}\left|g_{j}(p)\right|^{2}\right)^{1 / 2}\right)\right)$ will be referred to as the Gamelin constant of R of index (n, δ) where the first supremum is taken with respect to corona data $\left\{f_{j}\right\}$ of index (n, δ) on R and the infimum is taken with respect to corona solutions $\left\{g_{j}\right\}$ of each fixed datum $\left\{f_{j}\right\}$ under the usual convention that $\inf _{\left\{g_{j}\right\}}$ $=\infty$ if there exist no corona solutions $\left\{g_{j}\right\}$ of the datum $\left\{f_{j}\right\}$.

We assume that R is a two-sheeted unlimited covering surface over the unit disc D, which we call a two-sheeted disc. We will show the following

Theorem 1. For each $0<\delta<1$, there exists a constant $C(\delta)$ depending only on δ such that

$$
\begin{equation*}
C(\delta)=\sup _{n}\left(\sup _{R} C(R ; n, \delta)\right)<\infty \tag{3}
\end{equation*}
$$

where n runs over all positive integers and R runs over all two-sheeted discs.

Corollary. Let R be any two-sheeted disc. Let $\left\{f_{j}\right\}$ be a sequence of functions in $H^{\infty}(R)$ such that $0<\delta \leq\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2} \leq 1$. Then there exists a sequence of functions $\left\{g_{j}\right\}$ in $H^{\infty}(R)$ and a constant $c(\delta)$ depending only on δ such that $\sum_{j} f_{j} g_{j}=$ 1 and $\left(\sum_{j}\left|g_{j}\right|^{2}\right)^{1 / 2} \leq c(\delta)$.
Let (R, π, D) be any two-sheeted disc with projection π. For any f in $H^{\infty}(D)$, the function $f \cdot \pi$ belongs to $H^{\infty}(R)$. We identify f with $f \cdot \pi$, so that $H^{\infty}(D)$ is a subset of $H^{\infty}(R)$. If R has too many branch points, it holds that $H^{\infty}(R)=$ $H^{\infty}(D)$, where Corollary was proved by M. Rosenblum [5] and V. A. Tolokonnikov [6] (cf. [4]).

1. In order to prove Theorem 1, by a normal families argument it is enough to show the following

Theorem 2. Let R be a two-sheeted disc defined by a two-valued function $\zeta=\sqrt{B}$, where B is a finite Blaschke product whose zeros are all simple. If an n-tuple of
(4) $\quad f_{j}=a_{j}+b_{j} \sqrt{B} \quad(j=1, \ldots, n)$
is a corona datum of index (n, δ) on R such that a_{j} and b_{j} are holomorphic on some neighbourhood of \bar{D}, then there exists a corona solution $\left\{g_{j}\right\}$ of $\left\{f_{j}\right\}$ such that

$$
\left(\sum_{j}\left|g_{j}\right|^{2}\right)^{1 / 2} \leq C \delta^{-12}
$$

where C is a constant independent of δ, B and n.
We will prove Theorem 2 in $\S \S .2-7$. In $\S .2$ we introduce a function ρ, which plays an important role in our proof. In $\S \S .3$ and 4 corona solutions are given. By duality, those estimates are reduced to ones of four functions, which are accomplished in $\S \S .5$ and 6 . Our proof is concluded in §.7.
2. Let (\cdot, \cdot) and $\|\cdot\|$ be the inner product and norm of \boldsymbol{C}^{n}. Let $a=\left(a_{1}, \cdots, a_{n}\right), b=\left(b_{1}, \cdots\right.$, $\left.b_{n}\right)$ and $f=\left(f_{1}, \cdots, f_{n}\right)$,
(5) $\rho=\|a\|^{4}+\|b\|^{4}|B|^{2}-(a, b)^{2} \bar{B}-(b, a)^{2} B$
$+\left(\|a\|^{2}\|b\|^{2}-|(a, b)|^{2}\right)\left(|B|^{2}+1\right)$,
(6) $x_{j}=\left(\|a\|^{2}+\|b\|^{2}\right) a_{j}-\{(a, b)+(b, a) B\} b_{j}$ and
(7) $y_{j}=-\{(a, b)+(b, a) B\} a_{j}$
$+\left(\|a\|^{2}+\|b\|^{2}\right) B b_{j}$.
Proposition 1. ρ, x_{j} and y_{j} are smooth on some neighbourhood of \bar{D} such that $\rho \geq \delta^{4}$ and $\sum_{j}\left(a_{j}+b_{j} \sqrt{B}\right)\left(\bar{x}_{j}+\bar{y}_{j} \sqrt{B}\right)=\rho$.

Proof. By (1) and (4), we have
$\sum_{j}\left|a_{j}+b_{j} \sqrt{B}\right|^{2} \geq \delta^{2}$ and $\sum_{j}\left|a_{j}-b_{j} \sqrt{B}\right|^{2} \geq \delta^{2}$. Since $2|B| \leq|B|^{2}+1$ and

$$
\begin{aligned}
& \left(\sum_{j}\left|a_{j}+b_{j} \sqrt{B}\right|^{2}\right)\left(\sum_{j}\left|a_{j}-b_{j} \sqrt{B}\right|^{2}\right) \\
& =\|a\|^{4}+\|b\|^{4}|B|^{2}-(a, b)^{2} \bar{B}-(b, a)^{2} B \\
& \quad+2\left(\|a\|^{2}+\|b\|^{2}-|(a, b)|^{2}\right)|B|,
\end{aligned}
$$

we obtain $\rho \geq \delta^{4}$.
We may assume that functions x_{j} and y_{j} are smooth and have compact supports in the com-
plex plane \boldsymbol{C}.
3. Denote by t the transpose operator of a matrix. For $1 \leq j, k \leq n$, set
(8) $h_{j}=\rho^{-1}\left(\bar{x}_{j}+\bar{y}_{j} \sqrt{B}\right)$ and $h=\left(h_{1}, \cdots, h_{n}\right)$,
(9) $u_{j k}=\rho^{-2}\left\{\left(\bar{x}_{j} \overline{\partial x_{k}}-\bar{x}_{k} \overline{\partial x}_{j}\right)+\left(\bar{y}_{j} \overline{\partial y}_{k}-\bar{y}_{k} \overline{\partial y}_{j}\right) B\right\}$ and $u=\left[u_{j k}\right]$,

$$
\begin{equation*}
v_{j k}=\rho^{-2}\left\{\left(\bar{x}_{j} \overline{\partial y}_{k}-\bar{x}_{k} \overline{\partial y}_{j}\right)+\left(\bar{y}_{j} \overline{\partial x}_{k}-\bar{y}_{k} \overline{\partial x}_{j}\right)\right\} \tag{10}
\end{equation*}
$$

$$
\text { and } v=\left[v_{j k}\right],
$$

$$
\begin{equation*}
u_{0 j k}(z)=\frac{1}{\pi} \iint_{C} \frac{u_{j k}(\zeta)}{z-\zeta} d \xi d \eta \text { and } u_{0}=\left[u_{0 j k}\right] \tag{11}
\end{equation*}
$$ and

$$
\begin{equation*}
v_{0 j k}(z)=\frac{1}{\pi} \iint_{C} \frac{v_{j k}(\zeta)}{z-\zeta} d \xi d \eta \text { and } v_{0}=\left[v_{0 j k}\right] \tag{12}
\end{equation*}
$$ then we have $(\alpha) u=-{ }^{t} u$ and $v=-{ }^{t} v,(\beta) \bar{\partial}$ $u_{0}=u$ and $\bar{\partial} v_{0}=v$, and $(\gamma) u+v \sqrt{B}=\left({ }^{t} h\right) \bar{\partial} h$ $-\left(\bar{\partial}\left({ }^{t} h\right)\right) h$, where $\quad \partial=\partial / \partial z=2^{-1}(\partial / \partial x-$ $i \partial / \partial y)$ and $\bar{\partial}=\partial / \partial \bar{z}=2^{-1}(\partial / \partial x+i \partial / \partial y)$. Denote by $A_{n}(D)$ a set of all n-dimensional square matrices $W=\left[w_{j k}\right]$ such that $w_{j k}$ are continuous on \bar{D} and holomorphic on D. Then we have $\bar{\partial}\left(W+u_{0}\right)=u$ and $\bar{\partial}\left(W+v_{0}\right)=v$ for W $\in A_{n}(D)$.

4. For a matrix-valued function $W=\left[w_{j k}\right]$ on a set S, let

$$
\|W\|_{\infty, S}=\operatorname{ess} . \sup _{S}\left(\sum_{j k}\left|w_{j k}\right|^{2}\right)^{1 / 2} .
$$

And, for a vector-valued function $g=\left(g_{1}, \cdots\right.$, g_{n}) on S, let
$\|g\|_{\infty, S}=\operatorname{ess} . \sup _{s}\left(\left|g_{1}\right|^{2}+\cdots+\left|g_{n}\right|^{2}\right)^{1 / 2}$. A matrix W is said to be anti-symmetric if $W=$ $-{ }^{t} W$. We will give corona solutions $\left\{g_{j}\right\}$ of the corona datum $\left\{f_{j}\right\}$.

Proposition 2. Let W_{u} and W_{v} be antisymmetric in $A_{n}(D)$. Let $\Omega=\left(W_{u}+u_{0}\right)+\left(W_{v}\right.$ $\left.+v_{0}\right) \sqrt{B}$ and ${ }^{t} g={ }^{t}\left(g_{1}, \cdots, g_{n}\right)={ }^{t} h+\Omega^{t} f$. Then each g_{j} is continuous on \bar{R} and holomorphic on R such that $\sum_{j} f_{j} g_{j}=1$ and

$$
\|g\|_{\infty, \partial R} \leq\|h\|_{\infty, \partial R}+\left\|W_{u}+u_{0}\right\|_{\infty, \partial D}
$$

$$
+\left\|W_{v}+v_{0}\right\|_{\infty, \partial D} .
$$

Proof. By Proposition 1, $\quad h^{t} f=f^{t} h=1$. Since $f \Omega^{t} f$ is a one-dimensional and antisymmetric matrix, $f \Omega^{t} f=0$ and hence $\sum_{j} f_{j} g_{j}=$ $f^{t} g=f^{t} h+f \Omega^{t} f=1$. The function g is continuous on \bar{R}. Except for branch points,

$$
\begin{aligned}
\bar{\partial}(t g) & =\bar{\partial}(t h)+\left\{\bar{\partial}\left(W_{u}+u_{0}\right)+\bar{\partial}\left(W_{v}+v_{0}\right) \sqrt{B}\right\}^{t} f \\
& =\bar{\partial}\left(t^{(t h}\right)+(u+v \sqrt{B})^{t} f \\
& \left.=\bar{\partial} \bar{\partial} t^{t} h\right)+\left\{^{t} h \bar{\partial} h-\left(\bar{\partial} h\left(t^{t} h\right)\right) h\right\}^{t} f \\
& =\bar{\partial}\left(t^{t} h\right)+{ }^{t} h\left(\bar{\partial}\left(h^{t} f\right)\right)-\left(\bar{\partial}\left({ }^{t} h\right)\right)\left(h^{t} f\right)=0 .
\end{aligned}
$$

Since isolated singular points are removable for bounded holomorphic functions, g is holomorphic
on R.
In order to estimate $\left\|W_{u}+u_{0}\right\|_{\infty, \partial D}$ and $\| W_{v}$ $+v_{0} \|_{\infty, \partial D}$, we make use of the following lemmas.

Lemma 1. ([4: p. 290]). For $w_{0}=u_{0}\left(\right.$ or $\left.v_{0}\right)$ and $w=u($ or $v)$,
$\inf \left\{\left\|W+w_{0}\right\|_{\infty, \partial D} ; W \in A_{n}(D)\right.$ and $\left.W=-{ }^{t} W\right\}$

$$
\begin{aligned}
& \leq 2 \sup _{\varphi}\left(\iint_{D}|\varphi|^{2}\|w\|^{2} \log \frac{1}{\frac{1}{|z|}} d x d y\right)^{1 / 2} \\
& \quad+\sup _{\varphi} \iint_{D}|\varphi|^{2}\|\partial w\| \log \frac{1}{\frac{1}{\mid z}} d x d y
\end{aligned}
$$

where φ runs over all of Hardy class H^{2} with norm $\|\varphi\|_{2} \leq 1$.

Lemma 2. ([4: p. 290]). If $w \in C^{2}(\bar{D})$ such that $w \geq 0$ and $\Delta w \geq 0$ and if $\varphi \in H^{2}$, then

$$
\begin{aligned}
& \left(\iint_{D}|\varphi|^{2}(\Delta w) \log \frac{1}{|z|} d x d y\right)^{1 / 2} \\
& \quad \leq\left((2 \pi e) \sup _{D} w\right)^{1 / 2}\|\varphi\|_{2} .
\end{aligned}
$$

5. The following lemmas are elementary.

Lemma 3. $\|a\| \leq 1$ and $\|b\| \leq 1$.
Proof. By (1) and (4),
$2\left\{\left|a_{j}\right|^{2}+\left|b_{j} \sqrt{B}\right|^{2}\right\}=\left|a_{j}+b_{j} \sqrt{B}\right|^{2}+\mid a_{j}-b_{j}$ $\left.\sqrt{B}\right|^{2} \leq 2$.
Hence $\sum_{j}\left|a_{j}\right|^{2} \leq 1$ and $\Sigma_{j}\left|b_{j} \sqrt{B}\right|^{2} \leq 1$. The function $\sum_{j}\left|b_{j}\right|^{2}$ is subharmonic. By the maximum principle,
$\sum_{j}\left|b_{j}\right|^{2} \leq \sup _{\partial D} \sum_{j}\left|b_{j}\right|^{2}=\sup _{\partial D} \sum_{j}\left|b_{j} \sqrt{B}\right|^{2} \leq 1$.
Lemma 4. Let $v=\left(v_{1}, \cdots, v_{n}\right)$ and $w=$ $\left(w_{1}, \cdots, w_{n}\right) \in \boldsymbol{C}^{n}$. Then

$$
\sum_{j k}\left|v_{j} w_{k}-v_{k} w_{j}\right|^{2} \leq 2\|v\|^{2}\|w\|^{2}
$$

Lemma 5. Let $c_{i}(i=1,2)$ and $d_{i}(i=1,2$, $3,4)$ be functions on D. If we set $X_{j}=c_{1} a_{j}+c_{2} b_{j}$ and $Y_{j}=d_{1} a_{j}+d_{2} b_{j}+d_{3} a_{j}^{\prime}+d_{4} b_{j}^{\prime}(1 \leq j \leq n)$, then

$$
\begin{aligned}
& \sum_{j k}\left|X_{j} Y_{k}-Y_{j} X_{k}\right|^{2} \\
& \quad \leq 20\left(\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}\right)\left\{\left|d_{1}\right|^{2}+\left|d_{2}\right|^{2}\right. \\
& \left.\quad+\left(\left|d_{3}\right|^{2}+\left|d_{4}\right|^{2}\right)\left(\left\|a^{\prime}\right\|^{2}+\left\|b^{\prime}\right\|^{2}\right)\right\} .
\end{aligned}
$$

Proof. By the Binet-Cauchy formula we have

$$
\begin{aligned}
& X_{j} Y_{k}-Y_{j} X_{k}=\text { determinant of } \\
& \left\{\begin{array}{llll}
c_{1} & c_{2} & 0 & 0 \\
d_{1} & d_{2} & d_{3} & d_{4}
\end{array}\right\}\left\{\begin{array}{ll}
a_{j} & a_{k} \\
b_{j} & b_{k} \\
a_{j}^{\prime} & a_{k}^{\prime} \\
b_{j}^{\prime} & b_{k}^{\prime}
\end{array}\right\} .
\end{aligned}
$$

By Schwarz's inequality and Lemma 3 and Lemma 4 we obtain

$$
\begin{aligned}
& \sum_{j k}\left|X_{j} Y_{k}-Y_{j} X_{k}\right|^{2} \leq 5 \sum_{j k}\left\{\left|c_{1} d_{2}-c_{2} d_{1}\right|^{2}\right. \\
& \left|a_{j} b_{k}-a_{k} b_{j}\right|^{2}+\left|c_{1} d_{3}\right|^{2}\left|a_{j} a_{k}^{\prime}-a_{k} a_{j}^{\prime}\right|^{2} \\
+ & \left|c_{1} d_{4}\right|^{2}\left|a_{j} b_{k}^{\prime}-a_{k} b_{j}^{\prime}\right|^{2}+\left|c_{2} d_{3}\right|^{2}\left|b_{j} a_{k}^{\prime}-b_{k} a_{j}^{\prime}\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left|c_{2} d_{4}\right|^{2}\left|b_{j} b_{k}^{\prime}-b_{k} b^{\prime}\right|^{2}\right\} \leq 20\left\{\left(\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}\right)\right. \\
& \quad\left(\left|d_{1}\right|^{2}+\left|d_{2}\right|^{2}\right)+\left|c_{1}\right|^{2}\left|d_{3}\right|^{2}\left\|a^{\prime}\right\|^{2} \\
& +\left|c_{1}\right|^{2}\left|d_{4}\right|^{2}\left\|b^{\prime}\right\|^{2}+\left|c_{2}\right|^{2}\left|d_{3}\right|^{2}\left\|a^{\prime}\right\|^{2} \\
& \left.+\left|c_{2}\right|^{2}\left|d_{4}\right|^{2}\left\|b^{\prime}\right\|^{2}\right\}
\end{aligned}
$$

6. We will give estimates of $\|u\|^{2},\|v\|^{2}, \| \partial u$ $\|$ and $\|\partial v\|$.

Proposition 3. There exists a constant C such that

$$
\begin{aligned}
& \delta^{16}\|u\|^{2}, \delta^{16}\|v\|^{2}, \delta^{12}\|\partial u\| \text { and } \\
& \delta^{12}\|\partial v\| \leq C\left(\left\|a^{\prime}\right\|^{2}+\left\|b^{\prime}\right\|^{2}+\left|B^{\prime}\right|^{2}\right) . \\
& \text { Proof. Let } \omega=\left(\left\|a^{\prime}\right\|^{2}+\left\|b^{\prime}\right\|^{2}+\left|B^{\prime}\right|^{2}\right)^{1 / 2} .
\end{aligned}
$$ From (6), it follows that

$$
\begin{aligned}
\partial x_{j}= & \left\{\left(a^{\prime}, a\right)+\left(b^{\prime}, b\right)\right\} a_{j}-\left\{\left(a^{\prime}, b\right)+\left(b^{\prime}, a\right) B\right. \\
& \left.+(b, a) B^{\prime}\right\} b_{j}+\left(\|a\|^{2}+\|b\|^{2}\right) a_{j}^{\prime} \\
& -\{(a, b)+(b, a) B\} b_{j}^{\prime} .
\end{aligned}
$$

Set $X_{j}=x_{j}$ and $Y_{j}=\partial x_{j}$ in Lemma 4, then $c_{1}=$ $d_{3}=\left(\|a\|^{2}+\|b\|^{2}\right), \quad c_{2}=d_{4}=-(a, b)+(b$, a) $B, d_{1}=\left(a^{\prime}, a\right)+\left(b^{\prime}, b\right) \quad$ and $\quad d_{2}=-\left(a^{\prime}\right.$, b) $+\left(b^{\prime}, a\right) B+(b, a) B^{\prime}$.

Since $\left|c_{1}\right| \leq 2,\left|c_{2}\right| \leq 2,\left|d_{1}\right| \leq 2 \omega,\left|d_{2}\right| \leq 3 \omega$,
$\left|d_{3}\right| \leq 2$ and $\left|d_{4}\right| \leq 2$, we obtain

$$
\sum_{j k}\left|x_{j} \partial x_{k}-x_{k} \partial x_{j}\right|^{2} \leq \text { const. } \omega^{2} .
$$

Similarly we have

$$
\sum_{j k}\left|y_{j} \partial y_{k}-y_{k} \partial y_{j}\right|^{2} \leq \text { const. } \omega^{2} .
$$

By (9) and Schwarz's inequality, we have
$\|u\|^{2}=\sum_{j k}\left|u_{j k}\right|^{2} \leq 2 \rho^{-4} \sum_{j k}\left\{\left|x_{j} \partial x_{k}-x_{k} \partial x_{j}\right|^{2}\right.$

$$
\left.+\left|y_{j} \partial y_{k}-y_{k} \partial y_{j}\right|^{2}\right\} \leq \text { const. } \delta^{-16} \omega^{2^{n}} .
$$

By $|\partial \rho|^{2} \leq$ const. ω^{2} and Lemma 4, direct computations give

$$
\begin{aligned}
& \|\partial u\|^{2}=\sum_{j k}\left|\partial u_{j k}\right|^{2} \\
& \leq\left.\left(4 \rho^{-6} \cdot 2+\rho^{-4} \cdot 5\right) \sum_{j k}| | \partial \rho\right|^{2}\left|x_{j} \partial x_{k}-x_{k} \partial x_{j}\right|^{2} \\
& +|\partial \rho|^{2}\left|y_{j} \partial y_{k}-y_{k} \partial y_{j}\right|^{2}+\left|\bar{\partial} x_{j} \partial x_{k}-\bar{\partial} x_{k} \partial x_{j}\right|^{2} \\
& +\left|\bar{\partial} y_{j} \partial y_{k}-\bar{\partial} y_{k} \partial y_{j}\right|^{2}+\left|x_{j} \partial \bar{\partial} x_{k}-x_{k} \partial \bar{\partial} x_{j}\right|^{2} \\
& \left.+\left|y_{j} \partial \bar{\partial} y_{k}-y_{k} \partial \bar{\partial} y_{j}\right|^{2}+\left|y_{j} \partial y_{k}-y_{k} \partial y_{j}\right|^{2}\left|B^{\prime}\right|^{2}\right\} \\
& \leq \text { const. } \delta^{-24} \omega^{4} .
\end{aligned}
$$

Similarly, estimates of $\|v\|^{2}$ and $\|\partial v\|^{2}$ are obtained.
7. Proof of Theorem 2. If we set

$$
w=\|a\|^{2}+\|b\|^{2}+|B|^{2},
$$

then we have $\Delta w=4\left(\left\|a^{\prime}\right\|^{2}+\left\|b^{\prime}\right\|^{2}+\left|B^{\prime}\right|^{2}\right)$. If we apply Lemma 2 to the function w, then

$$
\left(\iint_{D}|\varphi|^{2}(\Delta w) \log \frac{1}{|z|^{2}} d x d y\right)^{1 / 2}
$$

$$
\leq\left(2 \pi e\|w\|_{\infty}\right)^{1 / 2}\|\varphi\|_{2} \leq(2 \pi e \cdot 3)^{1 / 2} .
$$

By Proposition 3 and Lemma 1, Theorem 2 holds.
8. Proof of corollary. Let π be the projection from R to D. The function $F=\sum_{j}\left|f_{j}\right|^{2}$ is continuous on R, so that its sum converges uniformly on any compact subset of R by Dini's Theorem. Let $\left\{D_{n}\right\}$ be a sequence of discs such that $\bar{D}_{n} \subset D_{n+1}, \cup_{n} D_{n}=D$ and there exists no branch point of R above ∂D_{n}. For each $n \geq 2 / \delta$, there exists an $N(n)$ such that $\sum_{j>N(n)}\left|f_{j}\right|^{2}$ $\leq n^{-2}$ on the two-sheeted disc $\pi^{-1}\left(D_{n}\right)$, where we have $\sum_{j \leq N(n)}\left|f_{j}\right|^{2} \geq(\delta / 2)^{2}$. We assume that $N(n) \leq N(n+1)$. By Theorem 1 , there exists $\left\{g_{n j}\right\}_{j \leq N(n)}$ functions in $H^{\infty}\left(\pi^{-1}\left(D_{n}\right)\right)$ such that $\sum_{j} f_{j} g_{n j}=1$ and $\sum_{j}\left|g_{n j}\right|^{2} \leq C(\delta / 2)^{2}$. We set $g_{n j}=0$ if $j>N(n)$. By Cantor's diagonal process, we may assume that, for any j, the sequence $\left\{g_{n j}\right\}$ converges uniformly on any compact subset of R. Let g_{j} be the limit of $\left\{g_{n j}\right\}$. For $m \geq$ $N(k)$ and $n \geq k$, we have

$$
\begin{gathered}
\left|\sum_{1 \leq j \leq m} f_{j} g_{n j}-1\right|=\left|\sum_{1 \leq j \leq m} f_{j} g_{n j}-\sum_{j \leq N(n)} f_{j} g_{n j}\right| \\
\leq 2 \sum_{j>N(k)}\left|f_{j} g_{n j}\right| \leq(2 / k) C(\delta / 2)
\end{gathered}
$$

on $\pi^{-1}\left(D_{k}\right)$. Letting $n \rightarrow \infty$ and then $k \rightarrow \infty$, we have $\sum_{j} f_{j} g_{j}=1$.

References

[1] T. Gamelin: Localization of the corona problem. Pacific J. Math., 34, 73-81 (1970).
[2] M. Hara: Ideals of bounded holomorphic functions on simple n-sheeted discs. Nagoya Math. J., 123, 171-201 (1991).
[3] H. Hara and M. Nakai: Corona theorem with bounds for finitely sheeted disks. Tohoku Math. J., 37, 225-240 (1985).
[4] N. K. Nikol'skii: Tretise on the Shift Operator. Springer (1986).
[5] M. Rosenblum: A corona theorem for countably many functions. Integral equations and operator theory, 3, 125-137 (1980).
[6] V. A. Tolokonnikov: Estimates in Carleson's corona theorem and finitely generated ideals in the algebra H^{∞}. Funkcional. Anal. i Priloz, 14 (1980).

