Gamelin Constants of Two-sheeted Discs

By Masaru HARA

Department of Mathematics, Meijo University (Communicated by Kiyosi ITÔ, M. J. A., Nov. 12, 1996)

For any $0 < \delta < 1$ and *n*, an *n*-tuple $\{f_i\}$ of functions f_1, \ldots, f_n in the family $H^{\infty}(R)$ of bounded holomorphic functions on a Riemann surface R is referred to as a corona datum of index (n, δ) if the following condition is satisfied: $\delta \leq (\sum_{i} |f_{i}|^{2})^{1/2} \leq 1.$ (1)

An *n*-tuple $\{g_j\}$ of functions g_1, \ldots, g_n in $H^{\infty}(R)$ is said to be a corona solution of the datum $\{f_i\}$ if $\sum_{j} f_{j}g_{j} = 1$. The quantity $C(R; n, \delta)$ given by (2) $C(R; n, \delta) = \sup(\inf(\sup(\sum_{i} |g_{i}(p)|^{2})^{1/2}))$ $\{f_j\}$ $\{g_j\}$ $p \in \mathbb{R}$

will be referred to as the Gamelin constant of Rof index (n, δ) where the first supremum is taken with respect to corona data $\{f_i\}$ of index (n, δ) on R and the infimum is taken with respect to corona solutions $\{g_i\}$ of each fixed datum $\{f_i\}$ under the usual convention that $\inf_{\{g_i\}}$ $=\infty$ if there exist no corona solutions $\{g_i\}$ of the datum $\{f_i\}$.

We assume that R is a two-sheeted unlimited covering surface over the unit disc D, which we call a two-sheeted disc. We will show the following

Theorem 1. For each $0 < \delta < 1$, there exists a constant $C(\delta)$ depending only on δ such that $C(\delta) = \sup_{n} (\sup_{R} C(R; n, \delta)) < \infty,$ (3)

where n runs over all positive integers and R runs over all two-sheeted discs.

Corollary. Let R be any two-sheeted disc. Let $\{f_i\}$ be a sequence of functions in $H^{\infty}(R)$ such that $0 < \delta \leq (\sum_j |f_j|^2)^{1/2} \leq 1$. Then there exists a sequence of functions $\{g_i\}$ in $H^{\infty}(R)$ and a constant $c(\delta)$ depending only on δ such that $\sum_j f_j g_j = 1$ and $(\sum_j |g_j|^2)^{1/2} \leq c(\delta)$.

Let (R, π, D) be any two-sheeted disc with projection π . For any f in $H^{\infty}(D)$, the function $f \cdot \pi$ belongs to $H^{\infty}(R)$. We identify f with $f \cdot \pi$, so that $H^{\infty}(D)$ is a subset of $H^{\infty}(R)$. If R has too many branch points, it holds that $H^{\infty}(R) =$ $H^{\infty}(D)$, where Corollary was proved by M. Rosenblum [5] and V. A. Tolokonnikov [6] (cf. [4]).

1. In order to prove Theorem 1, by a normal families argument it is enough to show the following

Theorem 2. Let R be a two-sheeted disc defined by a two-valued function $\zeta = \sqrt{B}$, where B is a finite Blaschke product whose zeros are all simple. If an n-tuple of

 $f_j = a_j + b_j \sqrt{B} \quad (j = 1, \dots, n)$ (4)

is a corona datum of index (n, δ) on R such that a_i and b_i are holomorphic on some neighbourhood of \overline{D}_i . then there exists a corona solution $\{g_i\}$ of $\{f_i\}$ such that

 $(\sum_{i} |g_{i}|^{2})^{1/2} \leq C\delta^{-12},$

where C is a constant independent of δ , B and n.

We will prove Theorem 2 in §§.2-7. In §.2 we introduce a function ρ , which plays an important role in our proof. In §§.3 and 4 corona solutions are given. By duality, those estimates are reduced to ones of four functions, which are accomplished in §§.5 and 6. Our proof is concluded in §.7.

2. Let (\cdot, \cdot) and $\|\cdot\|$ be the inner product and norm of C^n . Let $a = (a_1, \dots, a_n)$, $b = (b_1, \dots, b_n)$ b_n) and $f = (f_1, \cdots, f_n)$, .

5)
$$\rho = ||a||^* + ||b||^* |B|^2 - (a, b)^2 B - (b, a)^2 B + (||a||^2 ||b||^2 - |(a, b)|^2) (|B|^2 + 1),$$

(6) $x_j = (||a||^2 + ||b||^2)a_j - \{(a, b) + (b, a)B\}b_j$ and

(7)
$$y_j = -\{(a, b) + (b, a)B\}a_j + (\|a\|^2 + \|b\|^2)Bb_j.$$

Proposition 1. ρ , x_j and y_j are smooth on some neighbourhood of \overline{D} such that $\rho \geq \delta^4$ and $\sum_{i} (a_{i} + b_{i}\sqrt{B}) (\bar{x}_{i} + \bar{y}_{i}\sqrt{B}) = \rho.$

Proof. By (1) and (4), we have

 $\sum_{j} |a_{j} + b_{j}\sqrt{B}|^{2} \ge \delta^{2}$ and $\sum_{j} |a_{j} - b_{j}\sqrt{B}|^{2} \ge \delta^{2}$. Since $2 |B| \leq |B|^2 + 1$ and

$$\begin{aligned} & (\sum_{j} \mid a_{j} + b_{j}\sqrt{B} \mid^{2}) (\sum_{j} \mid a_{j} - b_{j}\sqrt{B} \mid^{2}) \\ &= \| a \|^{4} + \| b \|^{4} | B |^{2} - (a, b)^{2} \overline{B} - (b, a)^{2} B \\ &+ 2(\| a \|^{2} + \| b \|^{2} - | (a, b) \mid^{2}) | B |, \end{aligned}$$

we obtain $\rho \geq \delta^{4}$.

we obtain $\rho \geq \delta^*$.

We may assume that functions x_i and y_i are smooth and have compact supports in the complex plane C.

3. Denote by t the transpose operator of a matrix. For $1 \le j, k \le n$, set

(8)
$$h_j = \rho^{-1}(\bar{x}_j + \bar{y}_j \sqrt{B})$$
 and $h = (h_1, \dots, h_n)$

(9)
$$u_{jk} = \rho^{-1} \{ (x_j \partial x_k - x_k \partial x_j) + (y_j \partial y_k - y_k \partial y_j) B \}$$

and $u = [u_{jk}],$

(10)
$$v_{jk} = \rho^{-2} \{ (\bar{x}_j \overline{\partial y}_k - \bar{x}_k \overline{\partial y}_j) + (\bar{y}_j \overline{\partial x}_k - \bar{y}_k \overline{\partial x}_j) \}$$

and $v = [v_{jk}],$

(11)
$$u_{0jk}(z) = \frac{1}{\pi} \int \int_C \frac{u_{jk}(\zeta)}{z - \zeta} d\xi d\eta$$
 and $u_0 = [u_{0jk}]$

and

(12) $v_{0jk}(z) = \frac{1}{\pi} \iint_C \frac{v_{jk}(\zeta)}{z-\zeta} d\xi d\eta$ and $v_0 = [v_{0jk}]$, then we have (α) $u = -{}^t u$ and $v = -{}^t v$, (β) $\bar{\partial}$ $u_0 = u$ and $\bar{\partial} v_0 = v$, and (γ) $u + v\sqrt{B} = ({}^th)\bar{\partial}h$ $- (\bar{\partial}({}^th))h$, where $\partial = \partial/\partial z = 2^{-1}(\partial/\partial x - i\partial/\partial y)$ and $\bar{\partial} = \partial/\partial \bar{z} = 2^{-1}(\partial/\partial x + i\partial/\partial y)$. Denote by $A_n(D)$ a set of all *n*-dimensional square matrices $W = [w_{jk}]$ such that w_{jk} are continuous on \bar{D} and holomorphic on D. Then we have $\bar{\partial}(W + u_0) = u$ and $\bar{\partial}(W + v_0) = v$ for $W \in A_n(D)$.

4. For a matrix-valued function $W = [w_{jk}]$ on a set S, let

$$\|W\|_{\infty,S} = \mathrm{ess.sup}_{S}(\sum_{ik} \|w_{ik}\|^{2})^{1/2}$$

And, for a vector-valued function $g = (g_1, \cdots, g_n)$ on S, let

 $||g||_{\infty,S} = \operatorname{ess.sup}_{S}(|g_{1}|^{2} + \cdots + |g_{n}|^{2})^{1/2}$. A matrix W is said to be anti-symmetric if $W = -^{t}W$. We will give corona solutions $\{g_{j}\}$ of the corona datum $\{f_{j}\}$.

Proposition 2. Let W_u and W_v be antisymmetric in $A_n(D)$. Let $\Omega = (W_u + u_0) + (W_v + v_0)\sqrt{B}$ and ${}^tg = {}^t(g_1, \cdots, g_n) = {}^th + \Omega{}^tf$. Then each g_j is continuous on \overline{R} and holomorphic on R such that $\sum_j f_j g_j = 1$ and

$$\|g\|_{\infty,\partial R} \leq \|h\|_{\infty,\partial R} + \|W_u + u_0\|_{\infty,\partial D} + \|W_v + v_0\|_{\infty,\partial D}.$$

Proof. By Proposition 1, $h^t f = f^t h = 1$. Since $f\Omega^t f$ is a one-dimensional and antisymmetric matrix, $f\Omega^t f = 0$ and hence $\sum_j f_j g_j =$ $f^t g = f^t h + f\Omega^t f = 1$. The function g is continuous on \overline{R} . Except for branch points,

$$\bar{\partial}({}^{t}g) = \bar{\partial}({}^{t}h) + \{\bar{\partial}(W_{u} + u_{0}) + \bar{\partial}(W_{v} + v_{0})\sqrt{B}\}^{t}f = \bar{\partial}({}^{t}h) + (u + v\sqrt{B})^{t}f = \bar{\partial}({}^{t}h) + \{{}^{t}h\bar{\partial}h - (\bar{\partial}({}^{t}h))h\}^{t}f = \bar{\partial}({}^{t}h) + {}^{t}h(\bar{\partial}(h{}^{t}f)) - (\bar{\partial}({}^{t}h))(h{}^{t}f) = 0.$$

Since isolated singular points are removable for bounded holomorphic functions, g is holomorphic

on **R**.

In order to estimate $||W_u + u_0||_{\infty,\partial D}$ and $||W_v + v_0||_{\infty,\partial D}$, we make use of the following lemmas.

Lemma 1. ([4: p. 290]). For $w_0 = u_0$ (or v_0) and w = u (or v), $\inf\{\|W + w_0\|_{\infty,\partial D}; W \in A_n(D) \text{ and } W = -{}^tW\}$

$$\leq 2 \sup_{\varphi} \left(\int \int_{D} |\varphi|^{2} \|w\|^{2} \log \frac{1}{|z|} dx dy \right)$$

+ $\sup_{\varphi} \int \int_{D} |\varphi|^{2} \|\partial w\| \log \frac{1}{|z|} dx dy,$

where φ runs over all of Hardy class H^2 with norm $\|\varphi\|_2 \leq 1$.

Lemma 2. ([4: p. 290]). If $w \in C^2(\overline{D})$ such that $w \ge 0$ and $\Delta w \ge 0$ and if $\varphi \in H^2$, then

$$\left(\int \int_{D} |\varphi|^{2} (\Delta w) \log \frac{1}{|z|} dx dy\right)^{1/2} \leq \left((2\pi e) \sup_{D} w\right)^{1/2} \|\varphi\|_{2}.$$

5. The following lemmas are elementary. Lemma 3. $||a|| \le 1$ and $||b|| \le 1$. *Proof.* By (1) and (4),

$$2\{|a_j|^2 + |b_j\sqrt{B}|^2\} = |a_j + b_j\sqrt{B}|^2 + |a_j - b_j|^2 \le 2.$$

Hence $\sum_{j} |a_{j}|^{2} \leq 1$ and $\sum_{j} |b_{j}\sqrt{B}|^{2} \leq 1$. The function $\sum_{j} |b_{j}|^{2}$ is subharmonic. By the maximum principle,

 $\sum_{j} |b_{j}|^{2} \leq \sup_{\partial D} \sum_{j} |b_{j}|^{2} = \sup_{\partial D} \sum_{j} |b_{j} \sqrt{B}|^{2} \leq 1.$

Lemma 4. Let $v = (v_1, \dots, v_n)$ and $w = (w_1, \dots, w_n) \in \mathbb{C}^n$. Then $\sum_{j_k} |v_j w_k - v_k w_j|^2 \le 2 ||v||^2 ||w||^2$.

Lemma 5. Let c_i (i = 1,2) and d_i (i = 1,2, 3,4) be functions on D. If we set $X_j = c_1 a_j + c_2 b_j$ and $Y_j = d_1 a_j + d_2 b_j + d_3 a_j' + d_4 b_j'$ $(1 \le j \le n)$, then

$$\begin{split} \sum_{jk} |X_j Y_k - Y_j X_k|^2 \\ &\leq 20 (|c_1|^2 + |c_2|^2) \{ |d_1|^2 + |d_2|^2 \\ &+ (|d_3|^2 + |d_4|^2) (||a'||^2 + ||b'||^2) \}. \end{split}$$

Proof. By the Binet-Cauchy formula we have

$$\begin{cases} X_{j}Y_{k} - Y_{j}X_{k} = \text{determinant of} \\ \begin{cases} c_{1} & c_{2} & 0 & 0 \\ d_{1} & d_{2} & d_{3} & d_{4} \end{cases} \begin{cases} a_{j} & a_{k} \\ b_{j} & b_{k} \\ a_{j}^{'} & a_{k}^{'} \\ b_{j}^{'} & b_{k}^{'} \end{cases} .$$

By Schwarz's inequality and Lemma 3 and Lemma 4 we obtain

$$\begin{split} \sum_{jk} |X_j Y_k - Y_j X_k|^2 &\leq 5 \sum_{jk} \{ |c_1 d_2 - c_2 d_1|^2 \\ |a_j b_k - a_k b_j|^2 + |c_1 d_3|^2 |a_j a_k' - a_k a_j'|^2 \\ + |c_1 d_4|^2 |a_j b_k' - a_k b_j'|^2 + |c_2 d_3|^2 |b_j a_k' - b_k a_j'|^2 \end{split}$$

$$\begin{aligned} &+ |c_2 d_4|^2 |b_j b_k' - b_k b_j'|^2 \} \leq 20 \{ (|c_1|^2 + |c_2|^2) \\ &+ |d_1|^2 + |d_2|^2) + |c_1|^2 |d_3|^2 ||a'|^2 \\ &+ |c_1|^2 |d_4|^2 ||b'|^2 + |c_2|^2 |d_3|^2 ||a'|^2 \\ &+ |c_2|^2 |d_4|^2 ||b'|^2 \} \end{aligned}$$

6. We will give estimates of $|| u ||^2$, $|| v ||^2$, $|| \partial u$ || and $|| \partial v ||$.

Proposition 3. There exists a constant C such that

$$\delta^{16} \| u \|^{2}, \ \delta^{16} \| v \|^{2}, \ \delta^{12} \| \partial u \| \text{ and } \\ \delta^{12} \| \partial v \| \leq C(\| a' \|^{2} + \| b' \|^{2} + \| B' |^{2}). \\ Proof. \quad \text{Let } \omega = (\| a' \|^{2} + \| b' \|^{2} + \| B' |^{2})^{1/2} \\ \text{From (6), it follows that}$$

$$\partial x_{j} = \{(a', a) + (b', b)\}a_{j} - \{(a', b) + (b', a)B + (b, a)B'\}b_{j} + (\|a\|^{2} + \|b\|^{2})a_{j}' - \{(a, b) + (b, a)B\}b_{j}'.$$

Set $X_j = x_j$ and $Y_j = \partial x_j$ in Lemma 4, then $c_1 = d_3 = (||a||^2 + ||b||^2)$, $c_2 = d_4 = -(a, b) + (b, a)B$, $d_1 = (a', a) + (b', b)$ and $d_2 = -(a', b) + (b', a)B + (b, a)B'$. Since $|c_1| \le 2$, $|c_2| \le 2$, $|d_1| \le 2\omega$, $|d_2| \le 3\omega$, $|d_3| \le 2$ and $|d_4| \le 2$, we obtain

$$\sum_{jk} |x_j \partial x_k - x_k \partial x_j|^2 \leq \text{const. } \omega^2.$$

Similarly we have

$$\sum_{jk} |y_j \partial y_k - y_k \partial y_j|^2 \leq \text{const. } \omega^2.$$

By (9) and Schwarz's inequality, we have
$$\|u\|^2 = \sum_{jk} |u_{jk}|^2 \leq 2\rho^{-4} \sum_{jk} ||x_j \partial x_k - x_k \partial x_j|^2 + |y_i \partial y_k - y_k \partial y_j|^2 \leq \text{const. } \delta^{-16} \omega^2.$$

By $|\partial \rho|^2 \leq \text{const. } \omega^2$ and Lemma 4, direct computations give

$$\begin{split} \| \partial u \|^2 &= \sum_{jk} | \partial u_{jk} |^2 \\ &\leq (4\rho^{-6} \cdot 2 + \rho^{-4} \cdot 5) \sum_{jk} \{ | \partial \rho |^2 | x_j \partial x_k - x_k \partial x_j |^2 \\ &+ | \partial \rho |^2 | y_j \partial y_k - y_k \partial y_j |^2 + | \bar{\partial} x_j \partial x_k - \bar{\partial} x_k \partial x_j |^2 \\ &+ | \bar{\partial} y_j \partial y_k - \bar{\partial} y_k \partial y_j |^2 + | x_j \partial \bar{\partial} x_k - x_k \partial \bar{\partial} x_j |^2 \end{split}$$

 $+ |y_j \partial \bar{\partial} y_k - y_k \partial \bar{\partial} y_j|^2 + |y_j \partial y_k - y_k \partial y_j|^2 |B'|^2 \}$ $\leq \text{ const. } \delta^{-24} \omega^4.$

Similarly, estimates of $||v||^2$ and $||\partial v||^2$ are obtained.

7. Proof of Theorem 2. If we set

 $w = ||a||^2 + ||b||^2 + ||B|^2,$ then we have $\Delta w = 4(||a'||^2 + ||b'||^2 + ||B'|^2).$ If we apply Lemma 2 to the function w, then

$$\left(\int\int_{D} |\varphi|^{2} (\Delta w) \log \frac{1}{|z|} dx dy\right)^{1/2}$$

$$\leq (2\pi e \| w \|_{\infty})^{1/2} \| \varphi \|_{2} \leq (2\pi e \cdot 3)^{1/2}$$

By Proposition 3 and Lemma 1, Theorem 2 holds. $\hfill \square$

8. Proof of corollary. Let π be the projection from R to D. The function $F = \sum_j |f_j|^2$ is continuous on R, so that its sum converges uniformly on any compact subset of R by Dini's Theorem. Let $\{D_n\}$ be a sequence of discs such that $\overline{D}_n \subset D_{n+1}$, $\bigcup D_n = D$ and there exists no branch point of R above ∂D_n . For each $n \ge 2/\delta$, there exists an N(n) such that $\sum_{j>N(n)} |f_j|^2 \le n^{-2}$ on the two-sheeted disc $\pi^{-1}(D_n)$, where we have $\sum_{j\le N(n)} |f_j|^2 \ge (\delta/2)^2$. We assume that $N(n) \le N(n+1)$. By Theorem 1, there exists $\{g_{nj}\}_{j\le N(n)}$ functions in $H^{\infty}(\pi^{-1}(D_n))$ such that $\sum_j f_j g_{nj} = 1$ and $\sum_j |g_{nj}|^2 \le C(\delta/2)^2$. We set $g_{nj} = 0$ if j > N(n). By Cantor's diagonal process, we may assume that, for any j, the sequence $\{g_{nj}\}$ converges uniformly on any compact subset of R. Let g_j be the limit of $\{g_{nj}\}$. For $m \ge N(k)$ and $n \ge k$, we have

$$|\sum_{1 \le j \le m} f_j g_{nj} - 1| = |\sum_{1 \le j \le m} f_j g_{nj} - \sum_{j \le N(n)} f_j g_{nj}|$$

$$\le 2 \sum_{j > N(k)} |f_j g_{nj}| \le (2/k) C(\delta/2)$$

on $\pi^{-1}(D_k)$. Letting $n \to \infty$ and then $k \to \infty$, we have $\sum_j f_j g_j = 1$.

References

- T. Gamelin: Localization of the corona problem. Pacific J. Math., 34, 73-81 (1970).
- [2] M. Hara: Ideals of bounded holomorphic functions on simple *n*-sheeted discs. Nagoya Math. J., 123, 171-201 (1991).
- [3] H. Hara and M. Nakai: Corona theorem with bounds for finitely sheeted disks. Tohoku Math. J., 37, 225-240 (1985).
- [4] N. K. Nikol'skii: Tretise on the Shift Operator. Springer (1986).
- [5] M. Rosenblum: A corona theorem for countably many functions. Integral equations and operator theory, 3, 125-137 (1980).
- [6] V. A. Tolokonnikov: Estimates in Carleson's corona theorem and finitely generated ideals in the algebra H^{∞} . Funkcional. Anal. i Priloz, 14 (1980).