The Diophantine Equation $a^{x}+b^{y}=c^{z}$. III

By Nobuhiro TERAI
Division of General Education, Ashikaga Institute of Technology
(Communicated by Shokichi Iyanaga, M. J. A., Jan. 12, 1996)

§1. Introduction. In our previous papers [5] and [6], we considered the following conjecture when $(p, q, r)=(2,2,3)$ and $(2,2,5)$, respectively.

Conjecture. If a, b, c, p, q, r are fixed positive integers satisfying $a^{p}+b^{q}=c^{r}$ with p, q, r ≥ 2 and $(a, b)=1$, then the Diophantine equation

$$
\begin{equation*}
a^{x}+b^{y}=c^{z} \tag{1}
\end{equation*}
$$

has only the positive integral solution $(x, y, z)=$ (p, q, r).

In this paper, we consider the above Conjecture when $p=2, q=2$ and r is an odd prime. Using known results about the Thue equation and the Baker theory, we show that if c or r is sufficiently large, then it holds for a, b, c satisfying certain conditions as specified in Theorem in §2.
§2. Theorem. We first prepare some lemmas.

In the same way as in the proof of Lemma 1 in [5], we obtain the following:

Lemma 1. The integral solutions of the equation $a^{2}+b^{2}=c^{r}$ with $(a, b)=1$ and r odd prime are given by

$$
\begin{gathered}
a= \pm u \sum_{j=0}^{(r-1) / 2}(-1)^{j}\binom{r}{2 j} u^{r-(2 j+1)} v^{2 j}, \\
b= \pm v \sum_{j=0}^{(r-1) / 2}(-1)^{j}\binom{r}{2 j+1} u^{r-(2 j+1)} v^{2 j}, \\
c=u^{2}+v^{2}, \text { where } u, v \text { are integers such that }
\end{gathered}
$$ $(u, v)=1$ and $u \not \equiv v(\bmod 2)$.

In the following, we consider the case $u=$ $m, v=1$; i.e.
(2) $\quad a=m \sum_{j=0}^{(r-1) / 2}(-1)^{j}\binom{r}{2 j} m^{r-(2 j+1)}$,
$b=\sum_{j=0}^{(r-1) / 2}(-1)^{j}\binom{r}{2 j+1} m^{r-(2 j+1)}, c=m^{2}+1$ and
m is even.
Lemma 2. Let r be an odd prime. Let a, b, c be positive integers satisfying (2) and $\left(\frac{a}{b}\right)=-1$, where $\left(\frac{*}{*}\right)$ denotes the Jacobi symbol. If the

Diophantine equation (1) has positive integral solutions (x, y, z), then x and y are even.

Proof. Since $a^{2}+b^{2}=c^{r}$, we have $\left(\frac{c}{b}\right)^{r}=$ $\left(\frac{c}{a^{\prime}}\right)^{r}=1$, so $\left(\frac{c}{b}\right)=\left(\frac{c}{a^{\prime}}\right)=1$ with $a=m a^{\prime}$. Since $\left(\frac{a}{b}\right)=-1, x$ must be even from (1).

If $r \equiv 1(\bmod 4)$, then we have $b \equiv 1(\bmod 8)$.
Thus we have $\left(\frac{m}{b}\right)=1$. In fact, putting $m=2^{\mathrm{s}} t$ $\left(s \geq 1\right.$ and t is odd), $\left(\frac{m}{b}\right)=\left(\frac{2^{s}}{b}\right)\left(\frac{t}{b}\right)=\left(\frac{t}{b}\right)=$ $\left(\frac{b}{t}\right)=\left(\frac{1}{t}\right)=1$. Hence we have $-1=\left(\frac{a}{b}\right)=$ $\left(\frac{m}{b}\right)\left(\frac{a^{\prime}}{b}\right)=\left(\frac{a^{\prime}}{b}\right)=\left(\frac{b}{a^{\prime}}\right)$, which implies that y is even from (1).

If $r \equiv-1(\bmod 4)$, then we have $b \equiv-1$ $(\bmod 4)$. Since $x \geq 2$, we have $(-1)^{y} \equiv$ 1 (mod 4) from (1). Thus y is even.

Remark. We checked that the assumption $\left(\frac{a}{b}\right)=-1$ holds for a, b, c in (2) when $r=$ 3,5,7 respectively (cf. Lemma 2 in [5] and Lemma 2 in [6]).

In the same way as in the proof of Lemma 3 in [6], we obtain the following:

Lemma 3. Let r be an odd prime, and let a, b, c be positive integers satisfying $a^{2}+b^{2}=c^{r}$ and $(a, b)=1$. Suppose that there is an odd prime l such that $a b \equiv 0(\bmod l)$ and $e \equiv 0(\bmod r)$, where e is the order of c modulo l. If the Diophantine equation (1) has positive integral solutions (x, y, z) under these conditions, then we have $z \equiv 0(\bmod r)$.

We use the following known Propositions $1,2,3,4$ to show Lemma 4.

Proposition 1 (Lebesgue [3]). The Diophantine equation $x^{2}+1=y^{n}$ has no positive integral solutions x, y, n with $n \geq 2$.

Proposition 2 (Le [2]). Let X, Y be non-zero integers such that $(X, Y)=1$ and $2 \mid X Y$. Let

$$
\begin{aligned}
& \varepsilon=X+Y \sqrt{-1} \text { and } \bar{\varepsilon}=X-Y \sqrt{-1} . \text { If } \\
& \qquad\left|\frac{\varepsilon^{n}-\bar{\varepsilon}^{n}}{\varepsilon-\bar{\varepsilon}}\right| \leq n
\end{aligned}
$$

for some integer n, then $n<8 \cdot 10^{6}$.
Proposition 3 (Bugeaud and Györy [1]). Let $f(x, y)$ be an irreducible binary form with integer coefficients and degree $d \geq 3$. Let m be a non-zero integer with $|m| \leq M(\geq e)$. All integral solutions x, y of the Thue equation

$$
f(x, y)=m
$$

satisfy

$$
\begin{gathered}
\log \max (|x|,|y|)<3^{3(d+9)} d^{18(d+1)} H^{2 d-2} \\
(\log H)^{2 d-1} \log M
\end{gathered}
$$

where H is the maximum absolute value of the coefficients of $f(x, y)$.

Proposition 4 ([4]). For any positive integer n and any complex numbers α, β, we have

$$
\alpha^{n}+\beta^{n}=\sum_{j=0}^{[n / 2]}(-1)^{j}\left[\begin{array}{l}
n \\
j
\end{array}\right](\alpha+\beta)^{n-2 j}(\alpha \beta)^{j}
$$

where $[n / 2]$ is the greatest integer not greater than $n / 2$ and

$$
\left[\begin{array}{c}
n \\
j
\end{array}\right]=\frac{(n-j-1)!n}{(n-2 j)!j!} \text { is an integer }(0 \leq j
$$

$$
\leq[n / 2])
$$

Lemma 4. Let r be an odd prime, and let a, b, c be positive integers satisfying (2). Let b be a prime power. If $r>8 \cdot 10^{6}$ or $\log c>10^{10^{14}}$, then the Diophantine equation

$$
a^{2 X}+b^{2 Y}=c^{r Z}
$$

has only the positive integral solution (X, Y, Z) $=(1,1,1)$.

Proof. It follows from Lemma 1 that we have

$$
\begin{gathered}
a^{X}= \pm u \sum_{j=0}^{(r-1) / 2}(-1)^{j}\binom{r}{2 j} u^{r-(2 j+1)} v^{2 j} \\
b^{Y}= \pm v \sum_{j=0}^{(r-1) / 2}(-1)^{j}\binom{r}{2 j+1} u^{r-(2 j+1)} v^{2 j}
\end{gathered}
$$

$c^{z}=u^{2}+v^{2}$, where $(u, v)=1, u$ is even and v is odd, since b is odd.

Since b is a prime power and $\left(v, \pm \sum_{j=0}^{(r-1) / 2}\right.$ $\left.(-1)^{j}\binom{r}{2 j+1} u^{r-(2 j+1)} v^{2 j}\right)$, we see that

$$
\begin{array}{r}
v= \pm 1, \sum_{j=0}^{(r-1) / 2}(-1)^{j}\binom{r}{2 j+1} u^{r-(2 j+1)} v^{2 j} \tag{3}\\
= \pm b^{Y}
\end{array}
$$

or
(4) $\quad v= \pm b^{Y}, \sum_{j=0}^{(r-1) / 2}(-1)^{j}\binom{r}{2 j+1} u^{r-(2 j+1)} v^{2 j}$

$$
= \pm 1
$$

We first consider (3). Then we have

$$
u^{2}+1=c^{z}
$$

which has only the solution $Z=1$ from Proposition 1 . Thus since $c=m^{2}+1$, we have $u=$ $\pm m$, so $Y=1, X=1$.

We next consider (4). The second equation in (4) has no non-trivial solutions if $r=3,5$ (cf. Lemma 5 in [5] and Lemma 5 in [6]). Thus we may suppose $r \geq 7$.

Let $\varepsilon=u+v \sqrt{-1}$ and $\bar{\varepsilon}=u-v \sqrt{-1}$. Then we have from (4)

$$
\begin{equation*}
\frac{\varepsilon^{r}-\vec{\varepsilon}^{r}}{\varepsilon-\bar{\varepsilon}}= \pm 1 \tag{5}
\end{equation*}
$$

Therefore it follows from Proposition 2 that $r<8 \cdot 10^{6}$.

We next show that $\log c<10^{10^{14}}$. Let $f(X, Y)$ $=\sum_{j=0}^{(r-1) / 2}\left[\begin{array}{l}r \\ j\end{array}\right] X^{(r-1) / 2-j} Y^{j}$. By Proposition 4, $f(X, Y) \in Z[X, Y]$ is a homogeneous polynomial of degree $(r-1) / 2 \geq 3$. Since

$$
\begin{gathered}
{\left[\begin{array}{l}
r \\
0
\end{array}\right]=1,\left[\begin{array}{c}
r \\
(r-1) / 2
\end{array}\right]=r, r \left\lvert\,\left[\begin{array}{l}
r \\
j
\end{array}\right]\right.} \\
j=1,2, \ldots,(r-3) / 2
\end{gathered}
$$

we see from Eisenstein's theorem that $f(X, Y)$ is irreducible over \boldsymbol{Q}. By (5), we have $f\left(-4 v^{2}\right.$, $\left.c^{z}\right)= \pm 1$, since $\varepsilon-\bar{\varepsilon}=2 v \sqrt{-1}$ and $\varepsilon \bar{\varepsilon}=u^{2}$ $+v^{2}=c^{Z}$. Note that the height H of $f(X, Y)$ satisfies ${ }^{*} H=\max _{0 \leq j \leq(r-1) / 2}\left[\begin{array}{l}r \\ j\end{array}\right]<2^{r-1}$. Hence it follows from Proposition 3 that
$\log c<\log \max \left(4 v^{2}, c^{z}\right)$

$$
<3^{3(d+9)} d^{18(d+1)}\left(2^{r-1}\right)^{2 d-2}\left(\log 2^{r-1}\right)^{2 d-1}
$$

with $d=(r-1) / 2$.
Substituting the upper bound of r into the above, we obtain $\log c<10^{10^{14}}$, as desired.

Combining Lemmas 2,3 with Lemma 4, we obtain the following:

Theorem. Let r be an odd prime, and let a, b, c be positive integers satisfying (2) and $\left(\frac{a}{b}\right)=$ - 1. Let b be a prime power. Suppose that there is an odd prime l such that $a b \equiv 0(\bmod l)$ and $e \equiv$ $0(\bmod r)$, where e is the order of c modulo l. If $r>8 \cdot 10^{6}$ or $\log c>10^{10^{14}}$, then the Diophantine equation $a^{x}+b^{y}=c^{z}$ has only the positive integral solution $(x, y, z)=(2,2, r)$.

References

[1] Y. Bugeaud and K. Györy: Bounds for the solutions of Thue-Mahler equations and norm form
equations (to appear in Acta Arith.).
[2] M. Le: A note on the Diophantine equation $a^{2}+$ $b^{y}=c^{z}$. Acta Arith., (3), 71, 253-257 (1995).
[3] V. A. Lebesgue: Sur l'impossibilité, en nombres entiers, de l'équation $x^{m}=y^{2}+1$. Nouv. Ann. Math., 9, (1), 178-181 (1850).
[4] R. Lidl and H. Niederreiter: Finite Fields. Addison-Wesley (1983).
[5] N. Terai: The Diophantine equation $a^{x}+b^{y}=$ c^{2}. Proc. Japan Acad., 70A, 22-26 (1994).
[6] N. Terai: The Diophantine equation $a^{x}+b^{y}=c^{z}$. II. Proc. Japan Acad., 71A, 109-110 (1995).

