McKay Correspondence and Hilbert Schemes*)

By Yukari ITO**) and Iku NAKAMURA***)

(Communicated by Heisuke HIRONAKA, M. J. A., Sept. 12, 1996)

Introduction. A particular case in the superstring theory where a finite group G acts upon the target Calabi-Yau manifold M in the theory seems to attract both physicists' and mathematician's attention from various viewpoints. In order to obtain a correct conjectural formula of the Euler number of a smooth resolution of the quotient space M/G, physicists were led to define the following orbifold Euler characteristic [2], [3]

$$\chi\left(M\,,\;G\right) = \frac{1}{\mid G\mid} \sum_{g_{h=hg}} \chi\left(M^{\langle g,h\rangle}\right),$$

where the summation runs over all the pairs g, h of commuting elements of G, and $M^{\langle g,h\rangle}$ denotes the subset of M of all the points fixed by both of g and h. Then a conjecture of Vafa [2], [3] can be stated in mathematical terms as follows.

Vafa's formula-conjecture. If a complex manifold M has trivial canonical bundle and if M/G has a (nonsingular) resolution of singularities $\widetilde{M/G}$ with trivial canonical bundle, then we have $\chi(\widetilde{M/G}) = \chi(M,G)$.

In the special case where $M = A^n$ an n-dimensional affine space, $\chi(M, G)$ turns out to be the number of conjugacy classes, or equivalently the number of equivalence classes of irreducible G-modules. If n = 2, then the formula is therefore a corollary to the classical McKay correspondence between the set of exceptional irreducible divisors and the set of equivalence classes of irreducible G-modules [13].

If n = 3, then the existence of the above resolution as well as Vafa's formulae is known by the efforts of mathematicians [14], [17], [12], [18], [7], [8], [9], [19]. Except in these cases Vafa's

formula is known to be true only in a few cases [6], for instance the case where G is a symmetry group S_m of m letters for n=2m an arbitrary even integer [5] [15]. In this case $M/G=\mathrm{Symm}^m(A^2)$ and $M/G=\mathrm{Hilb}^m(A^2)$ as we will see soon. A generalization of the classical McKay correspondence to an arbitrary n

is also known as an Ito-Reid (bijective) correspondence between the set of irreducible exceptional divisors in $\widehat{M/G}$ and the set of certain conjugacy classes called junior ones [11].

In the present article we will report an interesting return-path from the case where S_n acts on A^{2n} to the two dimensional case with a different G. The analysis of the case leads us to a natural explanation for the classical McKay correspondence mentioned above. We will explain this more precisely in what follows.

Let $\operatorname{Symm}^n(A^2)$ ($\simeq \operatorname{Chow}^n(A^2)$) be the n-th symmetric product of A^2 , that is by definition, the quotient of n-copies A^{2n} of A^2 by the natural action of the symmetry group S_n of n letters. Let $\operatorname{Hilb}^n(A^2)$ be the Hilbert scheme of A^2 parametrizing all the 0-dimensional subschemes of length n. By [1] [4] $\operatorname{Hilb}^n(A^2)$ is a smooth resolution of $\operatorname{Symm}^n(A^2)$ with a holomorphic symplectic structure and trivial canonical bundle.

Let G be an arbitrary finite subgroup of SL(2, C). The group G operates on A^2 so that it operates upon both $Hilb^n(A^2)$ and $Symm^n(A^2)$ canonically. Now we consider the particular case where n is equal to the order of G. Then it is easy to see that the G-fixed point set $\operatorname{Symm}^{n}(A^{2})^{G}$ in $\operatorname{Symm}^{n}(A^{2})$ is isomorphic to the quotient space A^2/G . The G-fixed point set $Hilb^n(A^2)^G$ in $Hilb^n(A^2)$ is always nonsingular, but can be disconnected and not equidimensional. There is however a unique irreducible component of $Hilb^n(A^2)^G$ dominating $Symm^n(A^2)^G$, which we denote by $Hilb^{c}(A^{2})$. $Hilb^{c}(A^{2})$ is roughly speaking the Hilbert scheme parametrising all the G-orbits of length |G|. Since Hilb (A^2) inherits holomorphic symplectic structure

^{*)} The first author is partially supported by JSPS, the Fûjukai Foundation and Japan Association for Mathematical Sciences. The second author is partially supported by the Grant-in-aid (No. 06452001) for Scientific Research, the Ministry of Education.

^{**)} Department of Mathematics, Tokyo Metropolitan University.

^{***)} Department of Mathematics, Hokkaido University.

 $\operatorname{Hilb}^n(A^2)$, $\operatorname{Hilb}^G(A^2)$ is a smooth resolution of A^2/G with trivial canonical bundle (Theorem 1.3). The structure of $\operatorname{Hilb}^G(A^2)$ is studied in detail by using the symmetric tensor representations of the group G.

Subsequently there emerges the classical McKay correspondence.

Let \mathfrak{m} (resp. \mathfrak{m}_S) be the maximal ideal of the origin of A^2 (resp. A^2/G) and let $\mathfrak{n}=\mathfrak{m}_S \vee_A$. Any point \mathfrak{p} of the exceptional set E of $\operatorname{Hilb}^G(A^2)$ is a G-invariant 0-dimensional subscheme Z of A^2 with support the origin, to which we associate a G-invariant ideal subsheaf I of \mathfrak{m} defining Z. Let $V(I):=I/\mathfrak{m}I+\mathfrak{n}$. The finite G-module V(I) is isomorphic to a minimal G-submodule of I generating the \mathcal{O}_{A^2} -module I.

If $\mathfrak p$ is a smooth point of E, V(I) is a nontrivial irreducible G-module. Meanwhile if $\mathfrak p$ is a singular point of E, then V(I) is a sum of two mutually distinct nontrivial irreducible G-modules. For any nontrivial irreducible G-module ρ we define a subset $E(\rho)$ of E consisting of all $I \in \operatorname{Hilb}^G(A^2)$ such that V(I) contains ρ as a G-submodule. We will see that $E(\rho)$ is a smooth rational curve. The map $\rho \mapsto E(\rho)$ gives a bijective correpondence (Theorem 3.1) between the set $\operatorname{Irr}(G)$ of all equivalence classes of nontrivial irreducible G-modules and the set $\operatorname{Irr}(E)$ of all irreducible components of E, which turns out to be the classical McKay correspondence [13].

1. The crepant (minimal) resolution.

Lemma 1.1. Let G be a finite group in GL(2, C), $Hilb^n(A^2)^G$ the subset of $Hilb^n(A^2)$ consisting of all the points fixed by any element of G. Then $Hilb^n(A^2)^G$ is nonsingular.

Lemma 1.2. Let G be a finite subgroup in $SL(2, \mathbb{C})$, n the order of G and $\operatorname{Symm}^n(A^2)^G$ the subset of $\operatorname{Symm}^n(A^2)$ consisting of all the points of $\operatorname{Symm}^n(A^2)$ fixed by any element of G. Then $\operatorname{Symm}^n(A^2)^G \cong A^2/G$.

Theorem 1.3. Let G be a finite subgroup in $SL(2, \mathbb{C})$, n the order of G. Then there is a unique irreducible component $\operatorname{Hilb}^G(A^2)$ of $\operatorname{Hilb}^n(A^2)^G$ dominating A^2/G , which is a minimal resolution of A^2/G with trivial canonical line bundle.

Remark. In what follows we identify a subscheme Z and the ideal I_Z , so that we consider $I_Z \in \operatorname{Hilb}^n(A^2)$.

2. A_n case. Let m be the maximal ideal of

 \mathcal{O}_{A^2} at the origin. Let (x, y) be a system of coordinates of A^2 , G a cyclic group of order n+1 and σ a generator of G. Let ε be a primitive (n+1)-th root of unity. We define the action of the generator σ upon C^2 by $(x, y) \mapsto (x, y) \cdot g = (\varepsilon x, \varepsilon^{-1} y)$. The simple singularity of type A_n is the quotient of A^2 by the cyclic group G.

Lemma 2.1. Hilb^G(A^2) is the union of the following G-invariant ideals of colength n + 1;

$$I(\Sigma) := \prod_{\mathfrak{p} \in \Sigma} \mathfrak{m}_{\mathfrak{p}} = (x^{n+1} - a^{n+1}, xy - ab,$$

 $y^{n+1} - b^{n+1})$ $I_{i}(p_{i}:q_{i}) := (p_{i}x^{i} - q_{i}y^{n+1-i}, xy, x^{i+1}, y^{n+2-i})$ where Σ is a G-orbit in A^{2} disjoint from the origin with $\#(\Sigma) = |G|, \mathfrak{p} := (a, b) \in \Sigma, \mathfrak{p} \neq (0,0),$ $1 \le i \le n \text{ and } [p_{i}, q_{i}] \in \mathbf{P}^{1}.$

Remark. Hilb^G(A^2) is the disjoint union of the subsets in Lemma 2. 1 except that $I_i(0:1) = I_{i+1}(1:0)$.

Theorem 2.2. Let a and b be the parameters of A^2 on which the group G acts by $g(a, b) = (\varepsilon a, \varepsilon^{-1}b)$. Let $S := A^2/G$, \tilde{S} the toric minimal resolution of S and U_i , the affine charts of \tilde{S} defined by

 $A^2/G \cong \operatorname{Spec} C[a^{n+1}, ab, b^{n+1}]$ $U_i := \operatorname{Spec} C[s_i, t_i] \ (1 \leq i \leq n+1)$ where we denote $s_i := a^i/b^{n+1-i}$, and $t_i := b^{n+2-i}/a^{i-1}$ under the usual notation of torus embeddings. Then the isomorphism of \tilde{S} with $\operatorname{Hilb}^G(A^2)$ is given by (the morphism defined by the universal property of $\operatorname{Hilb}^n(A^2)$ from) the following two-dimensional flat families of G-invariant ideals of \mathcal{O}_{A^2} $(1 \leq i \leq n+1)$.

 $\mathscr{I}_{i}(s_{i}, t_{i}) := (x^{i} - s_{i}y^{n+1-i}, xy - s_{i}t_{i}, y^{n+2-i} - t_{i}x^{i-1})$

3. Main theorem. Let G be a finite subgroup of $SL(2, \mathbb{C})$ and Irr(G) the set of all equivalence classes of nontrivial irreducible G-modules. Let $X=X_G:=\operatorname{Hilb}^G(A^2)$, $S=S_G:=A^2/G$, \mathfrak{m} (resp. \mathfrak{m}_S) the maximal ideal of X (resp. S) at the origin and $\mathfrak{n}:=\mathfrak{m}_S\mathcal{O}_{A^2}$. Let $\pi:X\to S$ be the natural morphism and E the exceptional set of π . Let Irr(E) be the set of irreducible components of E. Any $I\in X$ contained in E is a G-invariant ideal of \mathcal{O}_{A^2} which contains \mathfrak{n} . First we define

Definition. V(I) := I/(mI + n).

Definition. For any ρ , ρ' , and $\rho'' \in \operatorname{Irr}(G)$

 $E(\rho) := \{I \in \operatorname{Hilb}^G(A^2); V(I) \text{ contains a } G\text{-module } V(\rho)\}$

 $P(\rho, \, \rho') := \{ I \in \operatorname{Hilb}^G(A^2); \, V(I) \text{ contains a } \\ G\text{-module } V(\rho) \oplus V(\rho') \} \\ Q(\rho, \, \rho', \, \rho'') := \{ I \in \operatorname{Hilb}^G(A^2); \, V(I) \text{ contains a } \\ G\text{-module } V(\rho) \oplus V(\rho') \oplus V(\rho'') \}.$

Definition. Two irreducible G-modules ρ and ρ' are (McKay-) adjacent if $\rho \otimes \rho_{\rm nat} \supset \rho'$ or vice versa.

Definition. The McKay graph $\Gamma(\operatorname{Irr}(G))$ of $\operatorname{Irr}(G)$ is defined to be a graph whose vertices are $\operatorname{Irr}(G)$. Two vertices ρ and ρ' of $\Gamma(\operatorname{Irr}(G))$ are connected by a single edge if and only if ρ and ρ' are adjacent.

Then our main theorem is stated as follows.

Theorem 3.1. Let G be a finite subgroup of SL(2, C). Then

- (1) the map $\rho \mapsto E(\rho)$ is a bijective correspondence between Irr(G) and Irr(E),
- (2) $E(\rho)$ is a smooth rational curve for any $\rho \in Irr(G)$,
- (3) $P(\rho, \rho) = Q(\rho, \rho', \rho'') = \emptyset$ for any ρ , $\rho'\rho'' \in Irr(G)$.
- (4) $P(\rho, \rho') \neq \emptyset$ if and only if ρ and ρ' are adjacent. In this case $P(\rho, \rho')$ is a (reduced) single point, where $E(\rho)$ and $E(\rho')$ intersect transversally.

Corollary 3.2. Let $Z^* := \operatorname{Hilb}^G(A^2) \times_S \{0\}$ be a scheme-theoretic fiber of π at the origin. Then Z^* is a Cartier divisor of X with $Z^* = \sum_{\rho \in \operatorname{Irr}(G)} (\deg \rho) E(\rho)$.

Theorem 3. 1 is proved by describing all the ideals as we have done in section two for A_n . The details appear in [10] for A_n and D_n and in [16] for E_6 , E_7 and E_8 . By Theorem 3.1 $\Gamma(\operatorname{Irr}(G))$ is the same as $\Gamma(\operatorname{Irr}(E))$, the dual graph $\Gamma(\operatorname{Irr}(E))$ of E, in other words, the Dynkin diagram of S_G . We note that $\sum_{\rho \in \operatorname{Irr}(G)} (\deg \rho) \rho$ is the highest root in the root system on $\Gamma(\operatorname{Irr}(E))$ of E.

Example. With the notation in section two, we define characters ρ_k of G by $\rho_k(g) = \varepsilon^k (1 \le k \le n)$ or $(k \in \mathbf{Z}/(n+1)\mathbf{Z})$. Then we see that

$$\begin{split} &V(I_k(p_k:q_k)) \cong \\ & \begin{cases} \rho_1 & (k=1,\,p_1 \neq 0) \\ \rho_1 + \rho_2 & (k,\,p_k) = (1,0), \text{ or } (k,\,q_k) = (2,0) \\ \rho_2 & (k=2,\,p_2q_2 \neq 0) \\ \rho_k + \rho_{k-1} & (q_k = 0,2 \leq k \leq n) \\ \rho_k & (p_kq_k \neq 0) \\ \rho_k + \rho_{k+1} & (q_k = 0,1 \leq k \leq n-1) \\ \rho_n & (k=n,\,q_n \neq 0 \\ \end{split}$$
 It follows that $E(\rho_k) = \{I_k(p_k:q_k); [p_k:q_k]\}$

 $\in \mathbf{P}^1$ } and $P(\rho_k, \rho_{k+1}) = \{I_k(0:1)\} = \{I_{k+1}(1:0)\}$. Since $\rho_k \otimes \rho_{\text{nat}} = \rho_{k-1} + \rho_{k-1}$, we have $\Gamma(\text{Irr}(G)) = \Gamma(\text{Irr}(E))$.

References

- Arnaud Beauville: Variétés Kählerienes dont la première classe de Chern est nulle. J. Differentail Geometry, 18, 787-829 (1983).
- [2] L. Dixon, J. Harvey, C. Vafa, and E. Witten: Strings on orbifolds (I). Nucl. Phys., B 261, 678-686 (1985).
- [3] L. Dixon, J. Harvey, C. Vafa, and E. Witten: Strings on orbifolds (II). Nucl. Phys., B 274, 285-314 (1986).
- [4] John Fogarty: Algebraic families on algebraic surface. Amer. J. Math., 90, 511-521 (1968).
- [5] L. Göttsche: The Betti numbers of Hilbert scheme of points on a smooth projective surface. Math. Ann., 286, 193-207 (1990).
- [6] F. Hirzebruch and T. Höfer: On the Euler number of an orbifold. Math. Ann., 286, 255-260 (1990).
- [7] Y. Ito: Crepant resolution of trihedral singularities. Proc. Japan Acad., **70A**, 131-136 (1994).
- [8] Y. Ito: Crepant resolution of trihedral singularities and the orbifold Euler characteristic. Intern. Jour. of Math., 6, no. 1, 33-43 (1995).
- [9] Y. Ito: Gorenstein quotient singularities of monomial type in dimension three. J. Math. Sci. Univ. of Tokyo, 2, no. 2, 419-440 (1995).
- [10] Y. Ito and I. Nakamura: Hilbert schemes and simple singularities A_n and D_n (1996) (preprint).
- [11] Y. Ito and M. Reid: The McKay correspondence for finite subgroups of (3.C). Higher Dimensional Complex Varieties Proc. Internat. Conference, Trento, 1994, de Gruyter (1996) (alg-geom / 9411010).
- [12] D. Markushevich: Resolution of C^3/H_{168} (1994) (preprint).
- [13] J. McKay: Graphs, singularities, and finite group. in Santa Cruz, Conference on finite groups (Santa Cruz, 1979). Proc. Symp. Pure Math., AMS, 37, 183-186 (1980).
- [14] D. G. Markushevich, M. A. Olshanetsky, and A. M. Perelomov: Description of a class of superstring compactifications related to semi-simple Lie algebras. Comm. Math. Phys., 111, 247-274 (1987).
- [15] H. Nakajima: Heisenberg algebra and Hilbert scheme of points on projective surfaces (to appear in Ann. of Math).
- [16] I. Nakamura: Hilbert schemes and simple singularities E_6 , E_7 and E_8 (1996) (preprint).
- [17] S.-S. Roan: On the generalization of Kummer surfaces. J. Diff. Geometry, **30**, 523-537 (1989).

- [18] S.-S. Roan: On $c_1=0$ resolution of quotient singularity. Intern. Jour. of Math., $\mathbf{5}$, 523-536 Intern. Jour. Orbifolds in Dimension Three (to appear in
 - Topology).