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1. Introduction. The Cauchy problem in slightly restricted reformulation of Melrose Con-
the C category for hyperbolic operators with jecture, and this is expected since we are dealing

double characteristics has been studied by many with a sufficiency result.
authors under different geometrical perspectives. Even under the usual assumption that the
These results (see e.g. [15], [1] and the references principal symbol Pm vanishes exactly of order
therein) put in evidence the role of both the low- two on 2, one readily sees that the nature of
er order terms and the symplectic geometry the set .,ne (henceforth denoted by ), the
associated with the principal symbol at the dou- order of vanishing of / on .,ne and the geomet-

ble characteristic points, ry of the transition from a symplectic point of
The purpose of our work is the study of a view can be of a very wild type and may produce

case in which the set of double points 2 can be nontrivial situations.
written as the reunion of two nonempty subsets Therefore we started assuming that 2 is a

2,e, ]z,ne i.e. the set of effectively hyperbolic smooth submanifold of T’Y2\ {0}. Furthermore
double points and its Y]z-complementary respec- in Section 3 below we collected a number of re-

tively. We say that in this case a "transition" sults serving as a symplectic classification of the
occurs, or, roughly speaking, that a real eigenva- transition cases that can possibly occur. In this
lue of the fundamental matrix defined on 2,e framework Assumption (H2)isolates one of these
vanishes on .,.. cases.

Trying to provide a unifying approach to the More precisely (H2) takes a picture of
first of the open problems mentioned above, R.B. Fern(p) when p is inside or outside , avoiding
Melrose, [15], in 1984 formulated the following for instance Jordan blocks of size 4 in the cano-

conjecture: nical form of Fern(p), p and precising that
Conjecture. If the Cauchy problem for P (hay- 0 E 2(p) _< dlstz,.(p, Y.), where dist denotes

ing at most double characteristics) is well-posed in any geodesic distance of p 2 from ; but
Y2o then s(p)/,(p) is uniformly bounded in ]2,e N this is not yet enough to prove an energy esti-
T’V\ {0} for some neighborhood V of 0 In+l

mate eventually leading to existence and unique-
where hess. Indeed we recall that in the non degenerate
s(p) limpSm-l(P) effectively hyperbolic case (see e.g. Lemma 1.2.1

4- inf{[ Re P () s I" sl < Tr+F,(p)}. in [17]), denoting by Fe(p) the hyperbolicity
This conjecture, as it stands, has not been proved cone of the localized hyperbolic quadratic form
yet, however it gives a hint of what one should a(X, F,(p)X), "P, is effectively hyperbolic at
reasonably look for, when trying to formulate p" if and only if "F (p) N ranF,(p) N [(0, e0)]Pn
Levi conditions on the subprincipal symbol pS_. =/= 0, where with V {z TpT*Y2Ia(z, v)

The purpose of this paper is actually to 0, ’ v V} we define the dual with respect to
understand a degenerate effectively hyperbolic the symplectic form ff of a vector subspace V of
case" more precisely we will show that the uni- TpT*Y2.
form boundedness of the ratio s(p)/R(p) may Therefore for an effectively hyperbolic oper-
also serve as a sufficient condition for the well- ator it is always possible to find a time function
posedness of the Cauchy problem, provided cer- f, i.e. a Coo function vanishing on the double set
tain symplectically invariant geometric conditions of P,n, whose Hamilton vector field Hi(p), p
are satisfied. Our Assumption (H4) is therefore a belongs to iP,(p) (and for which in addition
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Of/Oo(P) 0 holds). The usual strategy in this
setting is to take advantage of this time function,
as in [15] and [17], and use a suitable weight
function in order to prove an energy estimate im-
plying well-posedness.

On the other hand one quickly realizes that
(see Section 3, example B) Assumption (H2) is too
static to handle degenerate effectively hyperbolic
cases. The existence of a "generalized" time func-
tion adapted to a "good" factorization of Pm is

what we need here in order to take care of these
difficulties. Roughly speaking we need a "real"
time function in 2\ , whose existence is of
course guaranteed by (H2), such that H(p),
when p 2 fi 2 has a smooth exit from

FPm(p) to ker Fpm(fi)). The precise type of re-

quests we are asking on the "time" function f is
written down explicitly in Assumption (H3). We
would also like to point out that under the
geometrical prescription of Hypothesis (H2) it is
always possible to exhibit a good factorization of
the principal symbol of P, according to Definition
2.1 in a way reminiscent of the well-known Ivrii
factorization (see e. g. Ivrii [6]). The couple (H2),
(H3) selects therefore a class of differential oper-
ators with double characteristics, whose fun-
damental matrix admits a non-negative real
eigenvalue /(p), vanishing of order at least two
on 2, for which the uniform boundedness of the
ratio s(p)/,(p) in Melrose conjecture proves to
be the sufficient condition ensuring the correct-
ness of the associated Cauchy problem.

2. Assumptions and the result. Let P(x, D)
be a differential operator of order m,
(2.1) P(x, D) Pm(x, D) 4- Pm-(x, D) 4-
where P(x, D) denotes the homogeneous part of
order j of P, j 0 m. We assume that P is
a differential operator with C coefficients in the
open set Q R"+, 0 f2. In this Section we
list our assumptions on the operator P.

The first hypothesis is concerned with the
intrinsic properties of the double characteristics
of the principal symbol of P.
(H 1)( The principal symbol Pro(x, ) of P is

hyperbolic with respect to the level
surfaces of xo.

(ii) The characteristic roots of o-+ Pm (x,
o, ’) have multiplicity at most
two; denoting by ]. {(x, )
T*9 \(0) [Pro (x, ) O, d’Pm (x, ) O,

02Pro(x, )/0se3 < 0} the set of the
double characteristics of Pro(x, se), we
assume that 2 is a C manifold such
that the canonical 1-form co does not
vanish on T2.

(iii) V p 2 denote by Vi,(p) the eigen-

space corresponding to the purely im-
aginary eigenvalue i2 of the fun-
damental matrix FPm(p) of Pm at p.
Then,

dim ( V(p) const.
i20

i2sp(FPm(P))
(iv) Pm(x, ) vanishes exactly of order

two on
The second assumption deals with the degen-

eracy of the real eigenvalues of Fpm(p) when p is
close to some critical subset 2 of 2.
(H2) There exists a subset of 2, , such that:

Fp(p) has a strictly positive eigenva-

lue, , (p) if and only if

(ii) Let
r(p) rank F(p),

when p . \ , and
r’(p) rank F:2 (p),

when p ]’ Then r(p)2"

Ez\E, r’(p) =- r’, Vp E and
moreover r r’ + 2.

(iii) The function / defined in (i) is (at
least) a C (1)

function difined on 2. In
particular this implies that /(p)
< d2x2(p, ) where dx2(" ) de-
notes any geodesic distance in 2 from
the set 2.

Assumption (H2) has essentially a "static" nature,
i.e. everything is looked at on a fixed point p
]2. We also need a more "dynamical" type of
assumption, which will be stated in (H3). To this

end let us define what we mean by factorization of
the principal symbol Pm. Without loss of general-
ity we may assume in the following that m 2.

Definition 2.1. We say that P2(x, ) is

factorized (in the sense of Ivrii [6]) if we can find
C symbols l(x, ’), m(x, ’)vanishing on 2,
homogeneous of degree one, q(x, ’) >-- 0 vanishing
on and homogeneous of degree two, such that,

denoting by A(x, ) o- l(x, ’), M(x, )
o- re(x, ’), we have:

HA (P) ker Fp2 (p) N ran
E’2"

(ii) P(x, )= -A(x, )M(x, ) + q(x, ’).
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(iii) {A, M}(p) 0, Vp e
(iv) Vpe E\E there exist Uo conic

neighborhood of p, a constant, Co > O, such that"
I{A, q} (P’) -< Co{- (P’),

p’ Uo and Co
<_ c2(p) for a suitable posi-

tive constant c.
v HA (P) Hu(p) kerFe) ran Fe(p),
Vp .

(H3) Assume that Pe(x, ) is factorized accord-
ing to Definition 2.1. Then there exists a
homogeneous symbol of degree zero f(x, ’)
vanishing on such that:
(i) {A,f}(p) (p), Vp E.
ii 0 {A, f} (x, ’) c{M, f} (x, ’), for

a suitable positive constant Q.

(iii) These exists ]0, 1[ such that
{q, f}(x, ’)
4[A, f} (x, ’) {M, f} (x, ’) q (x, ’),

fo a (x, ’) e U, # e E, U co-

ical neighborhood of .
The last hypothesis is concerned with the

lower order terms of the operator P.
(H4) There exist two positive constants C, s
such that, Vp
dist (P(p), ([-- Tr+Fe (p) + , Tr+Fe (p) s]

x {o}) u {(0,o)})
C2 (p)

where dist denotes any distance in C.
If Tr+Fp(p) > O, V p , then the above

condition becomes:
(a) dist (P(p), ([-- Tr+Fe(p) + , Tr+Fe(p)

-] x {o})) < C(p).
On the other hand if Tr+Fp(p) 0 on e, then
we obtain

(b) dist (P(p), {0,0}) C2 (p),
i.e. Pt(p) C2(p). In the non effectively
hyperbolic case, i.e. 2z 0, condition (a) becom-

ImP;(p) 0, --Tr+Fe(p) +s Re
< Tr+F(p)

while condition (b) means P(p) 0, thus reduc-
ing to the well-known Ivrii-Petkov-H0rmander
Levi conditions ([9], [4], [6]).

We are now in a position to state the main
theorem"

Theorem 2.1. Let P be a second order dif-
ferential operator verifying Assumptions (H1)-(H4).
Then the Cauchy problem for P in #t, t R is

well-posed in C.
3. Comments. In this Section we gather a

number of results characterizing our geometrical

situation as well as the different possible types
of degeneracy which may occur. Due to Assump-
tion (H1) (iv), denoting by /5 a point in ] and V
a conical neighborhood of fi we can find real
valued symbols homogeneous of degree one,

q(x, ’), j- 1 k, defined in Va such that
possibly after a conjugation with a Fourier integ-

ral operator leaving the time axis invariant
becomes

(3.1) P2(x, ) + qj (x, ’), (x, ) Va.
j=l

The following Proposition is essentially well
known and we include it for a better understand-
ing of the examples below.

Proposition 3.1. Let P be as in 3.1 above
and p ]}]2. Put"

v- ({o, i} (p),’", {o, } (p)),
0 {,, .} (p) {,, } (p)

{q)2, (’/)1 (tO) 0 {(02, ()k
D o

{(/gk, ()1 (p) {(l)k, (Z)2} (p) 0

and denote by 7ro R- ker Mo the projection oper-
ator onto Ker Mo. Then either

a) 7roVo 4: O" in this case P, is effectively

hyperbolic at p ,2.
or

b) 7covo O" in this case the following situa-

tions occur"

(i) Mfflvol > 1" then F2(p) has two real non-

zero eigenvalues.
F F(ii) IMply [- 1" then ker ,2(p) ( ran ,(p)

{0}, i.e. F,(p) has a Jordan block of size 4 in
its canonical form.

F(iii) Mlvo < 1" then ker F(p) ( ran ,2(P)
{0}, i.e. F(p) is non effectively hyperbolic.

Here MIvo means the unique vector belonging to
(ker M)

+/-
which is mapped to vo by M

The next proposition asserts that there are no

Jordan blocks of size 4 in the canonical form of

Fe(p).
Proposition 3.2. Assume that (H1), (H2) hold.

Then V p "2,

ker F: (p) F/ ran F:. (p) {0}.
Moreover if p 2 \ ’, 7covo :/: O.

Proposition 3.3. Assume that (H1), (H2) hold"
let {) ’ and U- a conical neighborhood of fi" it

is then possible to find a vector
r(x, ’) (r(x, ’),..., r_(x, ’) ),
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where Tj(x, ’)’s are real symbols homogeneous of
degree zero smoothly dependent on Xo. such that
(i) If

A(x, ) 0 + <7"(x, ’), p"(x, ’)5,
M(x, ) o- <r(x, ’), q/’(x, ’)>,
Q(x, ’) ’(x, ’) +

((Id- r )"(x, ’), "(x, ’)),
then

P(x, ) --AM+ Q;
(ii) [7(p) < 1, for every p e U
(iii) {A, Q} C(Q+Do’]);
(iv) {A, M}(p) 0, foreveryp U.

Prosition 3.4. Assume (H1), (H2) hold.
Furthermore suppose that if V fi there exists
a closed, proper cone F(fi) TT* such that
(3.2) li z F(fi),

where z denotes the eigenvector corresponding to the
positive eigenvalue (p), p , then condi-

tion (i) in Assumption (H3) can always be fulfilled.
Remark 3.1. If the manifold is cylindric-

al with respect to xo, then A M o yields a fac-
torization in te sense of Definition 2.1, and condi-

tion (iii) of (H3) becomes"

{0, f}(x, )P(x, ) + C{P, f}(x, ) 0,
for a suitable positive constant C, in a neighborhood

of a point fi .
We now exhibit a number of examples and

counterexamples to our Assumptions (H1)-(H4).
Let us start first with some models which do not
satisfy at least one of the above mentioned
assumptions.
A. Let P2(x, ) : + (x:- x)2 +

near (0 en), r > 0 Using the notations
of Proposition 3.1 we have

v-- (z, 0) and M-
_

hence v 0 and M-v (0, ) which

can coincide with one of the cases of item b)
in Proposition .1 according to z < g,

or z > . Therefore Assumption
(H2) is not satisfied.

B. Let
P (x, + (Xo (g x:) +

(2bxxXo x),
near (0, e,), b R. It is easy to show that
Hypotheses (H1), (H2) are verified and that
2 x +xa. Moreover A(x, ) M(x, )
0 yields a factorization in the sense of

Definition 2.1. On the other hand (i) of (H3)
is not satisfied: there is no choice of C
functions a,/ such that

[a (Xo(X +
fl (2 bxox.x3 x,) >_ O,

since it is easily verified that there is no
closed, proper cone F(fi), fi ’, satisfying
condition (3.2) of Proposition 3.4.

C. Let P2(x, ) o -t- (XoX:1- Xl)2: ’-
klan -t- *k2x2n, near (0, e), where kl > 0,
k R, 1 N. This model satisfies all our
assumptions (H1)-(H4). Analogously

--2P (x, )
(XoX2 x,) + kl (x, ’),

near (0, e), where
Im k(x, ’) 0(x22 ++x),

Re k(x, ’) > 0,
satisfies (H 1)-(H4).

D. Let P2(x,
k(x), near (0, e), where k(x) is a smooth
function. After a symplectic dilation in the
variables (xl, 1)we reduce P. to the fol-
lowing symbol

4/f_2P(x, ) + XoX2 / fc(x).
Recalling the celebrated necessary conditions
of Ivrii-Petkov ([9], [8]) we see that in order
that the local Cauchy problem for P (and
hence for P) be well-posed we must neces-

21
sarily have k(x)- x (x). Hence if kl in
Example C is zero, we conclude that
Assumption (H4)cannot be improved.

E. In order to give an idea of the microlocal
energy estimate needed in the present situa-

tion we exhibit an elementary estimate for
the operator in Example D. We will not en-

ter into the details of the symbolic calculus
and proceed only at a formal level.
Denote by f2(x) (XoX: X) + n "this
is the formal time function used in the esti-

mate. The operator P satisfies all our
assumptions and f verifies the conditions of

LHypothesis (H3). Denote by Y the -norm
of a C function y in the open set . There-
fore we compute

(3.3) 2iIm (f-N pu, f-N DoU)
2l

2iIm (f-N (__ Do + f D. + D. + ,kx D.)u,
f-NDoU)

Do[llf- Dou / f-g+lOnU -4-II f-NOn/2 ull2]
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-N-l lr2iNRe f X.oU

N 1 __/ __/ ,/

f + f xeon u+
-N+l/2 I -N-l/2

2ilm <f zxzu, f xzDou>
DoE1- 2iNE2 + i.
It is easy to see that Ilcan be estimated
by N E2 provided N is sufficiently large and
that E and E define positive energies. We
also note how the positivity of the real
eigenvalue of Fpz, 2 xtn, plays a crucial
role in establishing the estimate.
Theorem 2.1. is a consequence of the follow-
ing Proposition:

Prosition 3.5. The following (local) energy
estimate holds:

0
-2VXoe Pu +sdxo

-2rXo 2
dxo

C[v e-2x [ll u I[t + Dou I[t] dxo,

for every V s R, V R.
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