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On the Kloosterman-sum Zeta-function
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The aim of the present paper is to show that
given the spectral resolution of the hyperbolic
Laplacian there is an argument which leads us

fairly quickly to Kuznetsov’s spectral expansion

[1, (7.26)] of the Kloosterman-sum zeta-function

Z,n,n(S). Since his formula is equivalent to his
much quoted trace formula [1, Theorem 2], our
argument provides the latter with a more accessi-
ble proof. To prove his result on Zm,n(S) Kuznet-
sov developed a quite ingenious argument of
transforming the inner-product of two Poincare
series into a series of J-Bessel functions inte-
grated with respect to their orders, and applied
various averaging technique to extract the defin-
ing series of Z,n,n(S). Thus, though powerful and
impressive, his argument inevitably depended
heavily on the theory of Bessel functions as is
well indicated by his use of exotic identities such
as that of Gegenbauer [3, p. 138 (1)]. We shall
dispense with those heavy machineries
altogether.

Before starting our discussion it should be
worth remarking that though we restrict
ourselves to the case of the full modular group
F-- SL(2, Z) it is apparent that we do not lose
any generality.

Now, the Kloosterman-sum zeta-function is
defined as

Zm,n (S) (27’) 2s-1 Z S(m, n 1) 1-2s,
1=1

where S(m, ;l) is the Kloosterman sum

exp(2i(mh + nh)/l), hh 1 rood 1.
(h,l)=l

We are going to extract this series from Poincar
series. To this end we take the same initial step
as Kuznetsov’s or rather that of Selberg [2].
Thus, we introduce the Poincar series
() P(z, s)

G (Imv(z))S exp(2zimv(z)), a > 1,

where m is a positive integer, z--x q-ill (Y >
0) and Foo the stabilizer of the point at infinity.
We have the well-known Fourier expansion

sP (z, s) y exp (27rimz) +
1--Sy exp(2rcinx) 1-S(m, n;l)

1=1

ly (1 i)
x (1 + )-Sd,

which is equivalent to regrouping the summands
in (1) according to the double coset decomposi-
tion F\F/F. Thus Weil’s estimate for S(m,
n; l) yields that Phi(z, s) is regular in the region

3
a > -, where we have also the bound Pro(z, s)

<< y providing y is not too small. This means

in particular that P,(z, s) is in the Hilbert
3

space L2(, d) when a > -" here is the

fundamental region of F and d/ the Poincare met-
ric as usual. We should note that Weil’s bound
for S(rn, n;l) is not mandatory but a bound like

Estermann’s classical estimate is sufficient for
our purpose. At any event the above implies that
we may apply the spectral decomposition to the
inner product.

(P(’, s,), Pn(’, s0}

P,(z, s)P(z, s)df(z).

To state the decomposition we let : +

;: > 0, j --> 1 U {0} stand for the discrete

spectrum of the hyperbolic Laplacian acting on

L(, dl). Also let be an eigen-form corres-
ponding to , so that it has the Fourier expan-

sion
Cj(z) pj(n)Ki,(27r[ n[ y)exp(27rinx),

no
where K, is the K-Bessel function of order v. We
may assume that the set {} forms an orthonor-

3
real system. Then we have, for a, a. > 4
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(Re (s)
(3) (Pm(’, s), P,(’, s2)

F(sl)F(s2) (4r)-sl-s(n/m)1/2(sl-s2)

{
j=l

1 : 2ir()2ir() cOsh(f) O(Sl’ $2 f)

(mn)’rl(1 + 2ir)[
d

Here (m) is the sum of the ath powers of di-
visors of m, (s) the Riemann zeta-function and

O(s, s; r) F s + i

xF(s 2 + 1 ir).
For the detailed proof of (3) see the relevant part
of [1] although it is straightforward.
On the other hand the expression (2) and the un-
folding device give

(4) (Pm(’, sl), Pn(’, s2)>
6m.nF(s + s 1) (4m) -s,-s

+ 1-2’S(m, n 1)
l=l

(1 + 2)-Sys_s(;m, n, 1)d,

where 6m,. is the Kronecker symbol and

Y(,m,n,D

x exp(- 2ny(1 + iO-
2m ) dy.

12 (1 i)
To ensure the absolute convergence in (4) we im-

pose the condition
(5) a2 > a > 1,
which is to be removed later.

So far we have followed Kuznetsov’s argu-

ment. But we now depart from it. We are going to
transform the integral in (4) into an expression
similar to Barnes’ integral representation of the
hypergeometric function.

We have, by Mellin’s formula,
1 -1Y(;m,

x exp(-2(1 + i0) F()( 2 )-dd
where ()is the vertical line Re()= > 0,

1
and Arg(1 i)1< . This double integral

converges absolutely when
Re(m) +>0.

We exchange the order of integration and com-

pute the inner integral, getting
1

Y( ;m, n, 1)
2zci

(2n)-

(1 + i)+

1
where we have Arg(1 + i)[ < re. Thus, pro-
viding

(6) a + 0"2 a > O,
we have, for the integral in (4),

(1 + 2)-S’ys_sl(;m, n, l)d

2i (2n)- F()F( + s- s)

(1 + i)+
dd.

But, this double integral converges absolutely
when

1
(7) a--a +<0.
To see this it is enough to note that the integrand

is, by Stirling’s formula,
<< i-- i-+-
x exp(- l ]+ Im()Arg(1 + i) Im()Arg(1 i))

<< [-- I-+- exp< I/I l>,
provided ]land I[are sufficiently large.
Thus on (7) we may exchange the order of in-

tegration. In the resulting inner-integral we de-
form the contour and see that it is equal to

(1 i) -s

(1 + i*s ’
where C starts at + i, goes down along the im-
aginary axis, describes a small circle round in
the positive direction and returns to + i. We
note that 1 i is essentially positive and Arg(1
+ i)varies from --g to g round the contour.
We assume temporarily that + < 1. Then
the circular art of C can be collapsed to i, and
the integral is equal to

(1 + -s(-ie+s+ ie-+s)
(_ 1)+s d

2 sin(( + s)) 2-s-sF(1 s)F(s +
s- 1)/F(s- )
2-s-sF(s + s- 1)/{F( + s)F(s )).

By the analytic continuation we may obviously
drop the condition + < 1.
Collecting these we now have
( P(., s), P.(., s))

8,.F(s + s 1) (4m)-s-

+ 2(-ss-s+ns-sF(s + s- 1)
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1-sls(m, n; 1)W ;sl, s2
1=1

where
W(x s, s)

1 f( F()F(7+s-s)()-27ci F(r/ + s2)F(sl- r/) dr
Checking the convergence we see that (8) holds
when

3
a2 + cr > a > a +-(a > 0).

The conditions (6) and (7) are fulfilled, and (5)
has now been removed.
Now we specialize (8) by putting

sl 1, 32 s
with

Re(s) a> l--a, 0< cr<

Note that
W(x 1, s)

2ri )F(1 r/)(r/ + s- 1) dr/.

We are going to transform this into a series of
the Noumann type. For this sake we observe that
for any integer k

F(k + s)F(k +
F(k + 1-- s)F(k + 1--

F(k-- 1 + s)F(k-- 1 +
F(k s) F(k

F(k- 1 + s)F(k- 1 +(s + 7 1) (2k 1) F(k + 1 s)F(k + 1 )"
Thus we have, for any K > 0,

F(r/) F(1- s)
F(1- r/)(r/ + s- 1) F(s)

F(K 4- s)F(K 4-
F(K 4- 1 s)F(K 4- 1 r/) (s + r 1)

F(1-- s)
(2k-- 1)F(s) k--1

F(k-- 1 +s)F(k-- 1+x F(k+ 1--s)F(k+ 1-- )"
This implies that

F(1 s)
W(x 1, s) 27ciF(s)

(" F(K+ s)F(K+ r/) [x-F(K+ 1 s)F(K + 1 r/) (7 + s- 1)
F(k- 1 + s)2x_ F(1 s)

(2k- 1) ]k-l(X)F(s) F(k + 1 s)k=l

where the last factor is the ]-Bessel function of
order 2k- 1 (cf. [3, p. 192 (7)]). As K tends to
infinity the last integral converges to

which is the residue of the pole at 1 s. To see
this we move the contour to (--A) with a large
positive A < K, passing over 1- s, and note
that the integrand of the resulting integral is, by
Stirling’s formula,

K-(K
which gives the assertion. Thus we find that

(9) W(x;1, s) F(I-s)F(s) (_)2(s-1>
F(1--s) ,

(2k--1)
F(k-- l+s)

(x).F(s) F(k + 1 s)
We then collect (3) with s 1, (8) and (9),
finishing the proof of

Theorem (Kuznetsov [1]). We have, for any

1+ -- sin(zrs)

1
positive m, n and Re(s) >

1 pj (m) pj (n)Zm,n (S) -- sin (rs) jl’= cosh

_1 i)F(sx F(s -2+
f__: a2r(m) a2r(n)

(mn) ir (1 4- 2dr) 12

1 itch)2

_1 ir) F(s 2
x F(s - + 1 ir)dr
F(k- 1 + s) 1+ E Pm,n(k) F(k + 1 s) 27ck=l

F(s)
(m,n F(1 s)’

where
1

p,.(k) (2k 1) : S(m
l=l

It should be noted that Petersson’s famous formu-
la expresses Pm,n(k) in terms of Fourier coeffi-
cients of holomorphic cusp-forms of weight 2k.
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