A Characterization of Regularly Almost Periodic Minimal Flows

By Jirō EGAWA

Division of Mathematics and Informatics, Faculty of Human Development, Kobe University (Communicated by Kiyosi ITÔ, M. J. A., Dec. 12, 1995)

Abstract: In this paper we shall prove two theorems: Firstly, a minimal flow is regularly almost periodic if and only if it is almost automorphic and the dimension of the set of eigenvalues is 1. Secondly, a minimal flow is pointwise regularly almost periodic if and only if it is equicontinuous and the dimension of the set of eigenvalues is 1.

§1. Introduction. Let X be a metric space with metric d_X . Z, Q, R and C denote the set of integers, rational numbers, real numbers and complex numbers, respectively. A continuous mapping $\pi: X \times R \to X$ is said to be a *flow on* (a *phase space*) X if π satisfies the following conditions:

(1) $\pi(x, 0) = x \text{ for } x \in X.$

(2) $\pi(\pi(x, t), s) = \pi(x, t+s)$

for $x \in X$ and t, $s \in R$.

For $A \subseteq X$ and $B \subseteq R$, we denote the set $\{\pi(x, t) ; x \in A, t \in B\}$ by $\pi(A, B)$. The closure of $A \subseteq X$ is denoted by \overline{A} . For $x \in X$ we denote the orbit through $x \in X$ by $O_{\pi}(X)$, that is, $O_{\pi}(x) = \pi(x, R)$. $M \subseteq X$ is called an invariant set of π if $O_{\pi}(x) \subseteq M$ for each $x \in M$. The restriction of π to an invariant set M of π is denoted by $\pi \mid M$. A non-empty compact invariant set $M \subseteq X$ is said to be a minimal set of π if we have $\overline{O_{\pi}(x)} = M$ for each $x \in M$. If X is itself a minimal set of π , we say that π is a minimal flow on X. π is said to be equicontinuous if for each $\varepsilon > 0$ there exists a $\delta > 0$ such that $d_X(\pi(x, t), \pi(y, t)) < \varepsilon$ for $d_X(x, y) < \delta$ and $t \in R$.

Let π be a minimal flow on a compact metric space $X. x \in X$ is called a regularly almost periodic point if for each $\varepsilon > 0$ there exists an $\alpha > 0$ such that $\pi(x, n\alpha) \in U_{\varepsilon}(x)$ for $n \in Z$, where $U_{\varepsilon}(x) = \{z \in X; d_x(x, z) < \varepsilon\}$. The set of regularly almost periodic points is denoted by $R(\pi)$. If $R(\pi) \neq \phi$, we say that π is regularly almost periodic. If $R(\pi) = X$, we say that π is pointwise regularly almost periodic. $x \in X$ is said to be an almost automorphic point if $\pi(x, \tau_n) \rightarrow y$ as $n \rightarrow \infty$ for some sequence $\{\tau_n\} \subset R$ implies that $\pi(y, -\tau_n) \rightarrow x$ as $n \rightarrow \infty$. The set of almost automorphic points is denoted by $A(\pi)$. If $A(\pi) \neq \phi$, we say that π is almost automorphic. We can easily see that $R(\pi)$ and $A(\pi)$ are invariant sets of π . $\lambda \in R$ is said to be an eigenvalue of π if there exists a continuous mapping χ_{λ} : $X \rightarrow K = \{\xi \in C ; |\xi| = 1\}$ such that $\chi_{\lambda}(\pi(x, t)) = \chi_{\lambda}(x)\exp(i\lambda t)$ for $x \in X$ and $t \in R$. In this case, χ_{λ} is called an eigenfunction belonging to λ . The set of eigenvalues of π is denoted by $\Lambda(\pi)$. We can easily verify that $\Lambda(\pi)$ is a countable subgroup of the additive group R.

 $\alpha_1, \alpha_2, \ldots, \alpha_n \in R$ are said to be rationally independent if $r_1\alpha_1 + r_2\alpha_2 + \ldots + r_n\alpha_n = 0$ ($r_i \in Q$) implies $r_1 = r_2 = \ldots = r_n = 0$. We say that a countable subset A of Rhas dimension n if there exist $\alpha_1, \alpha_2, \ldots, \ldots, \alpha_n \in R$, which are rationally independent, such that we have $a = r_1\alpha_1 + r_2\alpha_2 + \ldots + r_n\alpha_n(r_i \in Q)$ for each $a \in A$. The dimension of $A \subset R$ is denoted by dim A.

In [4] regularly almost periodic minimal flows are discussed for discrete phase group. In this paper we characterize them for one parameter flows. In section 2 we shall show the following theorems.

Theorem 1. Let π be a minimal flow on a compact metric space X. Then π is regularly almost periodic if and only if it is almost automorphic and dim $\Lambda(\pi) = 1$.

Theorem 2. Let π be a minimal flow on a compact metric space X. Then π is pointwise regularly almost periodic if and only if it is equicontinuous and dim $\Lambda(\pi) = 1$.

§2. Proofs of Theorems. In this section we shall prove Theorems 1 and 2. In order to prove them, we need several propositions.

Let π and ρ be flows on compact metric spaces X and Y, respectively. A continuous map-

ping $h: X \to Y$ is said to a homomorphism from π to ρ if $h(\pi(x, t)) = \rho(h(x), t)$ for $(x, t) \in X \times R$. Furthermore, if h is a homeomorphism from Xonto Y, we say that h is an isomorphism from π to ρ . In this case, we say that π and ρ are isomorphic. The following proposition is well known.

Proposition 2.1. Let π and ρ be equicontinuous minimal flows on compact metric spaces X and Y, respectively. Then π and ρ are isomorphic if and only if $\Lambda(\pi) = \Lambda(\rho)$.

Proposition 2.2. Let π and ρ be minimal flows on compact metric spaces X and Y, respectively, and h a homomorphism from π to ρ . Then $x_0 \in$ $R(\pi)$ implies $h(x_0) \in R(\rho)$.

Proof. Easy.

Corollary 2.2.1. Under the assumption in Proposition 2.2, if π and ρ are isomorphic, and if π is pointwise regularly almost periodic, then ρ is so.

Proof. Easy.

Let B_U be the set of bounded and uniformly continuous function from R to C. Define a metric in B_U by $d_{B_U}(f, g) = \sup_{t \in R} \{|f(t) - g(t)|\}$ for $f, g \in B_U$. Then B_U is a complete metric space. We define a flow η on B_U by $\eta(f, t) = f_t$ for (f, t) $\varepsilon B_U \times R$, where $f_t(s) = f(t + s)$ for $s \in R$. Then η is an equicontinuous flow on B_U . For $f \in B_U$, put $\overline{O_{\eta}(f)} = \overline{\{f_t\}}_{t \in R} = H(f)$ and $\eta_f = \eta | H(f)$. A set $L \subset R$ is said to be relatively dense if there exists a l > 0 such that for each $t \in R$ we have $[t - l, t + l] \cap L \neq \phi$. A complex valued function f is said to be almost periodic if for each $\varepsilon > 0$ there exists a relatively dense subset $A_{\varepsilon} \subset R$ such that $|f(t + \tau) - f(t)| < \varepsilon$ for $\tau \in A_{\varepsilon}$ and $t \in R$.

Proposition 2.3. Let f be an almost periodic function. Then we have

- (1) $f \in B_U$ and H(f) is compact.
- (2) η_f is equicontinuous minimal flow on H(f).

(3) For each
$$\lambda \in R$$
, $\lim_{t \to \infty} \frac{1}{t} \int_0^t f(s) \exp(-i\lambda s) ds$

exists.

Put
$$\Lambda_f = \left\{ \lambda \in R ; \lim_{t \to \infty} \frac{1}{t} \int_0^t f(s) \exp(-i\lambda s) \right\}$$

 $ds \neq 0$. Then $\Lambda(\eta_f) = \Lambda_f$, where Λ_f is the least additive subgroup of R containing Λ_f .

Proof. See [1].

Corollary 2.3.1. Let π be an equicontinuous minimal flow on a compact metric space X with

 $\Lambda(\pi) = \{\lambda_n\}_{n=1}^{\infty}, and \sum_{n=1}^{\infty} |a_n| < \infty (a_n \varepsilon C - \{0\}).$ Put $f(t) = \sum_{n=1}^{\infty} a_n \exp(i\lambda_n t)$. Then f(t) is almost periodic, and π and η_f are isomorphic.

Proof. Since $\Lambda(\eta_f) = \tilde{\Lambda}_f = \Lambda_f = \{\lambda_n\}_{n=1}^{\infty} = \Lambda(\pi)$, the corollary follows from Proposition 2.1.

Proposition 2.4. Let π be a minimal flow on a compact metric space X. Then $x \in R(\pi)$ implies $x \in A(\pi)$, that is, a regularly almost periodic minimal flow is almost automorphic.

Proof. See [6], p. 337.

Proposition 2.5. Let π be an almost automorphic minimal flow on a compact metric space X. Then there exist an equicontinuous minimal flow ρ on Y and a homomorphism h from π to ρ such that $A(\pi) = \{x \in X ; h^{-1}\{(h(x)\} = \{x\}\})$. In this case we have $\Lambda(\pi) = \Lambda(\rho)$. Furthermore, if $A(\pi) = X$, then π is equicontinuous.

Proof. For the first statement, see [7], p. 737. For the second one, see [2], p. 151. The last statement follows from the first one

Proposition 2.6. Let π be a minimal flow on a compact metric space X. For $\alpha > 0$ and $x \in X$, put $C_{\alpha}(x) = \{\frac{\pi(x, n\alpha)}{C_{\alpha}(x)}; n \in Z\}$. If there exists $\alpha > 0$ such that $\overline{C_{\alpha}(x)} \neq X$, then $\Lambda(\pi) \neq \{0\}$.

Proof. See [1].

Proposition 2.7. Let π be a minimal flow on a compact metric space X. We assume that $C_{\alpha}(x) \neq X$ for $x \in X$ and $\alpha > 0$. Then there exists $\tau_{\alpha} > 0$ satisfies following conditions:

(1) {s;
$$\pi(x, s) \in C_{\alpha}(x)$$
} = { $n\tau_{\alpha}$ }_{n \in Z}.

(2)
$$C_{\tau_{\alpha}}(x) = C_{\alpha}(x)$$

(3)
$$y \in C_{\alpha}(x)$$
 implies $C_{\tau_{\alpha}}(y) = C_{\alpha}(y) = C_{\alpha}(x)$.

(4)
$$\pi\left(\overline{C_{\alpha}(x)}, \left[-\frac{\tau_{\alpha}}{2}, \frac{\tau_{\alpha}}{2}\right]\right) = X.$$

(5) For
$$-\frac{\tau_{\alpha}}{2} \leq t_1 < t_2 < \frac{\tau_{\alpha}}{2}$$
, we have $\pi(\overline{C_{\alpha}(x)})$,

(6) For
$$0 < \varepsilon < \frac{\tau_{\alpha}}{2}$$
, $\pi(\overline{C_{\alpha}(x)}, (-\varepsilon, \varepsilon))$ is open
in X and homeomorphic to $\overline{C_{\alpha}(x)} \times (-\varepsilon, \varepsilon)$.

Proof. See [1].

Proposition 2.8. Let π be a minimal flow on a compact metric space X. If $x_0 \in R(\pi)$, then $\overline{C}_{\alpha}(x_0) \neq X$ for some $\alpha > 0$. Furthermore, if $\overline{C}_{\alpha}(x_0) \neq X$, for each neighborhood $V(x_0)$ of x_0 , there exist $m \in Z(m > 0)$ such that $\pi(x_0, nm\tau_{\alpha}) \in \overline{C}_{\alpha}(x_0) \cap V(x_0)$ for $n \in Z$, where τ_{α} is the positive number in Proposition 2.7.

No. 10]

The first statement is obvious. For 0 $< \varepsilon < \frac{\tau_{lpha}}{\epsilon}$, put $U = V(x_0) \cap \pi(\overline{C_{lpha}(x_0)})$, $(-\varepsilon, \varepsilon)$ ε)). Then U is a neighborhood of x_0 by Proposition 2.7. Hence, by the assumption, there exists μ > 0 such that $\pi(x_0, n\mu) \in U$ for $n \in \mathbb{Z}$. Since $\pi(x_0, \mu) \in \pi(C_{\alpha}(x_0), (-\varepsilon, \varepsilon))$, there exist $m \varepsilon$ Z(m > 0) and $\nu \epsilon R(|\nu| < \epsilon)$ such that $\mu =$ $m\tau_{\alpha} + \nu$. We assume $\nu \neq 0$, Choose $l \in Z(l > l)$ 0) so that $|l\nu| < \varepsilon$ and $|(l+1)\nu| \ge \varepsilon$. Since ε $\leq (l+1) |\nu| \leq |l\nu| + |\nu| < 2\varepsilon < \frac{\tau_{\alpha}}{3} < \frac{\tau_{\alpha}}{2} ,$ we have $\pi(\overline{C_{\alpha}(x_0)}, (l+1)\nu) \cap U = \phi$ by Proposition 2.7. On the other hand, $\pi(x_0, (l +$ $1)\mu) = \pi(x_0, (l+1)(\underline{m\tau_{\alpha} + \nu})) = \pi(\pi(x_0, (l+1))) = \pi(\pi(x_0, (l$ 1) $m\tau_{\alpha}$), $(l+1)\nu$) $\varepsilon \pi(C_{\alpha}(x_0))$, $(l+1)\nu$). Since $\pi(x_0, (l+1)\mu) \in U$, this is a contradiction. Consequently, $\mu = m\tau_{\alpha}$ that is $\pi(x_0, nm\tau_{\alpha}) \in U$ $\cap C_{\alpha}(x_0) \subset V(x_0) \cap C_{\alpha}(x_0).$

Proposition 2.9. Let π be a regularly almost periodic minimal flow on a compact metric space X. If $x_0 \in R(\pi)$ and $\overline{C_{\alpha}(x_0)} \neq X(\alpha > 0)$, then $\overline{C_{\alpha}(x_0)}$ is 0 dimension at x_0 .

Proof. For any neighborhood $V'(x_0)$ of x_0 , we choose a neighborhood $V(x_0)$ of x_0 such that $\overline{V(x_0)} \subset V'(x_0)$. Then there exists $\underline{m \in Z(m > 0)}$ such that $\pi(x_0, nm\tau_\alpha) \in V(x_0) \cap \overline{C_\alpha(x_0)}$ for $n \in Z$ by Proposition 2.8. Since $\overline{C_{m\tau_\alpha}(x_0)} \subset$ $V'(x_0) \cap \overline{C_\alpha(x_0)}$, $\overline{C_{m\tau_\alpha}(x_0)}$ is closed in $\overline{C_\alpha(x_0)}$. On the other hand, for sufficient small $\varepsilon > 0$, $\pi(\overline{C_{m\tau_\alpha}(x_0)}, (-\varepsilon, \varepsilon)) \cap V'(x_0)$ is open in X by Proposition 2.7. Hence $\overline{C_{m\tau_\alpha}(x_0)} = \pi(\overline{C_{m\tau_\alpha}(x_0)}, (-\varepsilon, \varepsilon)) \cap \overline{C_\alpha(x_0)}$ is open in $\overline{C_\alpha(x_0)}$. Consequently, $\overline{C_\alpha(x_0)}$ is 0 dimension at x_0 .

Corollary 2.9.1. Let π be a pointwise regularly almost periodic minimal flow on a compact metric space X. Then, if $\overline{C_{\alpha}(x)} \neq X$ for $x \in X$ and $\alpha > 0$, then $\overline{C_{\alpha}(x)}$ is 0 dimension, that is, it is totally disconnected.

Proof. If $y \in \overline{C_{\alpha}(x)}$, then $\overline{C_{\alpha}(y)} = \overline{C_{\alpha}(x)}$ by Proposition 2.7. Hence, since $y \in R(\pi)$, $\overline{C_{\alpha}(y)}$ is 0 dimension at y. This implies that $\overline{C_{\alpha}(x)}$ is 0 dimension at every point in $\overline{C_{\alpha}(x)}$. Hence $\overline{C_{\alpha}(x)}$ is 0 dimension.

Corollary 2.9.2. Let π be a regularly almost periodic minimal flow on a compact metric space X. If $x_0 \in R(\pi)$, then X is 1 dimension at x_0 . *Proof.* Choose $\alpha > 0$ so that $\overline{C_{\alpha}(x_0)} \neq X$. For a sufficient small $\varepsilon > 0$, $\pi(\overline{C_{\alpha}(x_0)})$, $(-\varepsilon, \varepsilon)$) is open in X and homeomorphic to $\overline{C_{\alpha}(x_0)} \times (-\varepsilon, \varepsilon)$ by Proposition 2.7. Hence, since $\overline{C_{\alpha}(x_0)}$ is 0 dimension at x_0 , X is 1 dimension at x_0 ([5], p. 33).

Proposition 2.10. Let π be an equicontinuous minimal flow on a compact metric space X. If $R(\pi) \neq \phi$, then $R(\pi) = X$, that is, it is pointwise regularly almost periodic.

Proof. Let $x_0 \in R(\pi)$. Given $\varepsilon > 0$, there exists a $\delta > 0$ such that $d_x(x, y) < \delta$ and $t \in R$ implies $d_x(\pi(x, t), \pi(y, t)) < \frac{\varepsilon}{3}$. For $0 < \delta < \frac{\varepsilon}{3}$, there exists $\alpha > 0$ such that $d_x(x_0, \pi(x_0, \pi(x_0, n\alpha))) < \delta$ for $n \in \mathbb{Z}$. Since π is minimal, for $x \in X$ there exists $s \in R$ such that $d_x(x, \pi(x_0, s)) < \delta$. For this α we have

 $d_x(x, \pi(x, n\alpha))$

 $\leq d_X(x, \pi(x_0, s)) + d_X(\pi(x_0, s), \pi(\pi(x_0, n\alpha), s))$ $+ d_X(\pi(x_0, s), n\alpha), \pi(x, n\alpha)) < \varepsilon$ Hence $x \in R(\pi)$, that is, $R(\pi) = X$.

Proposition 2.11. Let π be an equicontinuous minimal flow on a compact metric space X. If dim $\Lambda(\pi) = 1$, then it is pointwise regularly almost periodic. Proof. Let $\Lambda(\pi) = \{\lambda_n\}_{n=1}^{\infty}$, where $\lambda_1 = 0$

and $\lambda_n \neq 0$ $(n \geq 2)$, and $\sum_{n=1}^{\infty} |a_n| < \infty (a_n \in C - \{0\})$. Put $f(t) = \sum_{n=1}^{\infty} a_n \exp(i\lambda_n t)$ for $t \in R$. By Corollaries 2.2.1 and 2.3.1 and Proposition 2.10, it is enough to show that f is a regularly almost periodic point of η_f . Since dim $\Lambda(\pi) = 1$, there exists $\beta > 0$ such that $\lambda_n = \frac{p_n}{q_n}\beta$ for $n = 2, 3, \ldots$, where $p_n, q_n \in Z$ are prime to each other. Given $\varepsilon > 0$, we choose $N \in Z(N > 0)$ so that $\sum_{N+1}^{\infty} |a_n| < \frac{\varepsilon}{2}$. Put $\alpha = \frac{2\pi}{\beta} q_2 q_3 \cdots q_{N-1} q_{N-1}$ Since $\exp(i\lambda_k \alpha) = \exp(2\pi i p_k q_2 q_3 \cdots q_{N-1} q_{N-1} q_{N-1})$ $= |\sum_{k=1}^{\infty} a_k \exp(i\lambda_k t) - \sum_{k=1}^{\infty} a_k \exp(i\lambda_k t) (\exp(i\lambda_k \alpha)^n)|$ $= |\sum_{k=1}^{\infty} a_k \exp(i\lambda_k t) - \sum_{k=1}^{\infty} a_k \exp(i\lambda_k t) (\exp(i\lambda_k \alpha)^n)|$ $<\sum_{k=N+1}^{\infty} |a_k| + \sum_{k=N+1}^{\infty} |a_k| < \varepsilon.$ Hence f is a regularly almost periodic point of

 η_{f} . *Proof of Theorem* 1. Assume that $R(\pi) \neq \phi$. Then $A(\pi) \neq \phi$, since $R(\pi) \subset A(\pi)$ by Proposition 2.4. Hence π is almost automorphic. By Propositions 2.6. and 2.8, we have $\Lambda(\pi) \neq \{0\}$. To prove dim $\Lambda(\pi) = 1$, we assume that there exist $\lambda_1, \lambda_2 \in \Lambda(\pi)$ which are rationally independent. Let χ_{λ_1} and χ_{λ_2} be eigenfunctions belonging to λ_1 and λ_2 , respectively. Define a flow ρ on $T^2 = K \times K$ by $\rho((\xi_1, \xi_2), t) = (\xi_1 \exp(i\lambda_1 t), \xi_2 \exp(i\lambda_2 t))$ for $(\xi_1, \xi_2) \in T^2$ and $t \in \mathbb{R}$. Then ρ is an equicontinuous minimal flow on T^2 . Define a mapping $h: X \to T^2$ by $h(x) = (\chi_{\lambda_1}(x), \chi_{\lambda_2}(x))$. Then h is a homomorphism from π to ρ . Since, if $x_0 \in R(\pi)$, we have $h(x_0) \in R(\rho)$ by Proposition 2.2, T^2 is 1 dimension at $h(x_0)$ by Corollary 2.9.2. This is a contradiction, because T^2 is obviously 2 dimension at $h(x_0)$. Hence dim $\Lambda(\pi)$ = 1.

Conversely, we assume that $A(\pi) \neq \phi$ and dim $\Lambda(\pi) = 1$. Then there exist an equicontinuous minimal flow ρ on Y and a homomorphism h from π to ρ such that $A(\pi) = \{x; h^{-1} \{(h(x)\}) = \{x\}\}$ by Proposition 2.5. In this case, since dim $\Lambda(\pi) = \dim \Lambda(\rho) = 1$ and ρ is equicontinuous, ρ is pointwise regularly almost periodic by Proposition 2.11. The restriction of h to $A(\pi)$ is a homeomorphism from $A(\pi)$ to $h(A(\pi))$ with respect to the relative topology, because h is injection and continuous. For $x \in A(\pi)$, let V(x) be an open neighborhood of x. Then $h(V(x) \cap A(\pi)) = h(V(x)) \cap h(A(\pi))$ is open in $h(A(\pi))$ with respect to the relative topology. Hence there exist an open set U of Y such that $U \cap h(A(\pi)) = h(A(\pi) \cap V(x))$. Since ρ is regularly almost periodic, there exist $\alpha > 0$ such that $\rho(h(x), n\alpha) \in U(n \in Z)$. Since $\rho(h(x), n\alpha) = h(\pi(x, n\alpha))$ $(n \in Z)$ and $h(A(\pi))$ is an invariant set of ρ , we have $\rho(h(x), n\alpha) \in U \cap h(A(\pi)) = h(V(x) \cap A(\pi))$. Consequently, $\pi(x, n\alpha) \in A(\pi) \cap V(x)$ $(n \in Z)$. This implies $x \in R(\pi)$. Hence π is regularly almost periodic.

Proof of Theorem 2. We assume that π is pointwise regularly almost periodic. Then $X = R(\pi) \subset A(\pi)$ means $A(\pi) = X$. Hence π is equicontinuous by Proposition 2.5. Furthermore, dim $A(\pi) = 1$ follows from Theorem 1. The converse is Proposition 2.11.

References

- J. Egawa: Eigenvalues of compact minimal flows. Math. Seminar Notes, Kobe University, 10, 281-291 (1982).
- [2] J. Egawa: Eigenvalues of some almost automorphic functions. Kobe J. Math., 2, 149-161 (1985).
- [3] J. Egawa: Eigenvalues of some almost periodic functions. Proc. Amer. Math. Soc., 115, 535-540 (1992).
- [4] W. H. Gottschalk and G. A. Hedlund: Topological Dynamics. Amer. Math. Soc. Colloquium Publication, 36 (1955).
- [5] W. Hurewicz and H. Wallman: Dimension Theory. Princeton (1948).
- [6] D. Mcmahon and T. S. Wu: On weakly mixing and local almost periodicity. Duke Math. J. 39, 333-342 (1972).
- [7] W. A. Veech: Almost automorphic functions on groups. Amer. J. Math., 87, 719-751 (1965).