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0. Introduction. The construction of sto-
chastic processes from a family of consistent
probability measures can be done by Kolmogor-

ov’s extention theorem (see [1 ]).
But the construction of stochastic processes

from a family of nonconsistent probability mea-
sures can not always be done.

In this paper we propose the following prob-
lems and give the answers.
(P1). For any T > 0 and any family of Borel
probability measures {p(t, dx)}o_<t<_ r on R d,
construct a Rd-valued Markov process {X(t)}o_<_t<_r
on a probability space (J2, B, P) such that
(0.1) P(X(t) dr) p(t, dr) for all te [0, 73.
(P2). For any T > 0, any family of Borel prob-

Rd
ability measures {p(t dx)}o<_t<_ r on and any
Borel probability measure #(dxdy)on R 2d

for

which el(dxdy) p(O, dx) and for which

Rg(dxdy) o(T, dy), construct a valued

reciprocal process (see I51) {X(t))o<_<_r on a

probability space (D, B, P) such that
(0.2) P(X(t) dx) p(t, dx) for all t [0, T],
(0.3) P(X(O) dx, X(T) dy) tz(dxdy).

Main idea is that of copula in the multivari-
ate analysis (see [2,7,8]). We give the definition
of a copula field, extending the idea, directly, to
the path space.

We also give the applications to the stochas-
tic control. (P1) is related to the stochastic quan-
tizations (see [6] and references therein).

1. Copula fields and one dimensional case.

In this section we show how to construct a real
valued stochastic process from a family of Borel
probability measures on R, extending directly the
idea of copula, to the path space. We also give

the definition of the copula field. In this section
we denote by I the parameter space.

Let us give the definition of a copula for a
real valued stochastic process which is well de-
fined from [7], Theorems 6.2.4, 6.2.5.

Definition 1.1. For any real valued stochas-
tic process {X(t)}t on a probability, space (Q,
B, P), the family (C:f(u,"’, U#A>)}z,#3><oo of
copulas which satisfies the following is called a

copula for {X(t)}tt" for any A {t,
ta)} I and any ’71’"" "’ "#(a) R
(l.1) P(X(t() <_ x,,..., X(t,,)) <_ x#,,)

(x,,))),CJ(F, (Xl),"
where we put FtX(x) P(X(t) <_ x).

Before we give the definition of a copulas
field for a real valued stochastic process, let us

give some notations. Denote by DF(R) the set of
all continuous distribution functions on R. For
F DF(R), we can define the functions F*(u)
(0 -< u g 1) by the following; put
F*(0) -=

max{x; F(x) 0} if 0 Range(F),
c if 0 Range(F),

(1.2) F*(u) =- min{x;F(x) u} for 0 <u < 1,
min{x" F(x) 1} if 1 Range(F)F* (1)
oo if 1 Range(F)

(see [71, p. 49). Put DF(R)* {F*’F,
DF(R) DF(R) =- {Ft}t Ft DF(R) (t
I) DF(R) {Ft*} t Ft DF(R) (t I) }.

Definition 1.2. For any real valued stochas-
tic process {X(t; w)}t,o on a probability
space (J2, B, P), the copula field {Cx(F*’,
oo) (t) t,F. UF<,>f,oa for {X(t" m) to is de-
fined as follows" for all t I, /7* iFs*}st
DF(R)*, and P- a.a.w
(!.3) Cx(F*; oJ) (t) F*(Fff(X(t w))),
When there is no confusion, we simply denote the

Cx *)copula field by (F (t), omitting o3

Remark 1.1. The copula for a real valued
stochastic process (X(t)}t is uniquely deter-
mined if and only if FiX(x) is continuous in x
R for all t I. Copula field for a real valued
stochastic process is unique. F is a quasi-in-
verse of F (see [7], p. 49), and our choice in (1.2)
is convenient as we show in the next proposition
whose proof is omitted.
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Proposition 1.1. For any F DF(R), F*
is strictly increasing, left continuous and has a
right hand side limits, and the following holds"
for any u (0,1), and any y R,
(1.4) F*(u) <_ y if and only ifu <-- F(y).

The next theorem shows that a copula field
for a real valued stochastic process is a path
space version of the idea of copula.

Theorem 1.2. For any {Ft}t
and any real valued stochastic process {X(t)}t
on a probability space (Q, B, P) for which

{Ftx}ti DF(R)I, the stochastic process {Y(t)
CX({Fs*}sI) (t)}ti satisfies the following" for

any n >_ 1, tl,..., t I(t 4= t if i 4= j), and yl,

"",YnR,
(1.5) P(Y(t) <- y,’" ", Y(t) <- y)

Cx
{tl,.. o,tn} (Ftl (Y) ,’" ", Ft,(y,,) ).

In particular, for any y R,
(1.6) P(Y(t) <y) =Ft(y) for all t I.

Proof. Since (1.6) is a special case of (1.5)
(see [71), we only prove (1.5).
Since P(0 <Fx(X(t) Fx (X(tn) < 1)
1, we have
(1.7) P( Y(t) <-- y, Y(t) <-

P(Ft*(Ftx(X(t))) <- Vl,’",

F*(Ftx, (X(tn)))in < Y,,)
P(Ftx(x(t)) <- Ft,(Y),’",
Ftx,(x(t,) <- Ftn(Yn) (from Proposition 1.1)

Cx x Fx(z.)){tl,...,tn} (Ftl (za) tn
xC,,,...,,, (F,, (y) ,’" ", Ft,(y,)).

Here we put z sup{x’, FX(x)t _< Ft,(y)} for 1
<i<_n.

Q.E.D.
We get the following proposition easily.
Proposition 1.3. For any F* DF(R)*I,

and any real valued stochastic process {X(t)}ti
on a probability space (.Q, B, P) for which

{Ftx}tI DF(R) i, the following holds.
(1). If {X(t)}tI is a Markov process, then so is
(Cx (F*) (t) } ,.
(2). If {X(t)}ti is a reciprocal process, then so
is {Cx(F*) (t) }

As an application of Theorem 1.2, let us
construct stochastic processes with special time
dependence.

Theorem 1.4. For any T > 0, any family of
distribution functions {Ft}tto, rl on R for which
F DF(R) for 0 < t < T, and any Borel prob-
ability measure 12(dxdy)on for which /2((--

co ,x] x (-- co co)) F0(x) and for which

/z((-- co, co) x (-- co, y]) Fr(y), there ex-
ists a real valued reciprocal process { Y(t)}o<_t< r
on a probability space CQ, B, P)such that for
all x, y R
(1.8) P(Y(t) < x) Ft(x) for all0 < t< T,
(1.9) P(Y(O) < x, Y(T) < y) ((-- oo, x]

x (- oo, v]).
Proof From Theorem 2.1 in [5], and the

first part of section 3 in [5], there exists a real
valued reciprocal process {X(t)}o<t<r on a
probability space (Q, B, P) such that for t
(o, T)
(1.10) P(X(O) dx, X(t) dz, X(T) dy)

(T/(27rt(T t)))/2exp(I x y ]2/(2T)
x z 1/(2t) z y 1/(2 (T t)))

dzl2 (dxdy)
This is true from the following. Put for 0 < s
< t< u_< T,x, y, zR,
(1.11) q(s, x t, y) (27r(t-- s)) -/

exp (- y x 12/(2 (t s))),
p(s, x t, y; u, z) q(s, x; t, y)q(t, y u, z)/

q(s, x u, z).
Then p(s, x;t, y;u, z) is a reciprocal transi-
tion probability density function (see [5], section
3). For p(dxdy) and p(s, x; t y; u, z), there
exists a reciprocal process {X(t)}o<_tr on a
probability space (Q, B, P) such that (1.10)
holds (see [5], Theorem 2.1).

Putting

CX({Fs } )(t) if0<t< T(1.12) Y(t) =- s<o,r)

X(t) if t- 0 or T,
the proof is over from Theorem 1.2 and Proposi-
tion 1.3.

Q.E.D.
The following Theorem can be obtained in

the same way as Theorem 1.4.
Theorem 1.5. For any T > 0, any family of

distribution functions {Ft}tio, r on R for which

Ft DF(R) for 0 < t< T, there exists a real
valued Markov process {Y(t)}o<t<r on a prob-
ability space (.Q, B, P) such that
(1.13) P ( Y(t) <- x) Ft (x)

for allxRand0 <-- t<-- T
Proof From Theorem 3.2 in [5], there exists

a real valued Markov process {X(t)}0<<r on a

probability space (.Q, B, P) such that (1.10)
holds and that
(1.14) P(X(O) dx) dFo(x),

P(X(T) dx) dFr(x).
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Putting

(1.15) Y(t) ({F:}seo,r))(t) if 0 < t < T,
X(t) if t 0 or T,

the proof is over from Theorem 1.2 and Proposi-
tion 1.3.

Q.E.D.
We close this section by giving the applica-

tion to the stochastic control (see [3]).
Fix T > 0 and a probability space (,Q, B,

P). Let h(t, x) [0, T] R
R, and Ge(x, y) R R be bounded measur-
able, and put for a real valued stochastic process
{X(t)}o<_<r,

(1.16) JI(X) E k(t, X(t))dt--I- G(X(T))

ft.(X) =- E k(t, X(t))dt + G(X(O), X()

The following theorem can be obtained from
Theorems 1.4 and 1.5 and the proof is omitted.

Theorem 1.6. (O) For any A DF(R)o,r)
and subset B of the set of all distribution func-
tions on R,

X
(1.17) inf{]l(X) {FtX}te(o,r)

inf{Jl(X);{FtX}t(o,r) A, FXr B,
{X(t)}o<t<T is a Markov process}.
(I) For any A c DF(R)(o,r) and subset Be of the
set of all Borel probability measures on Re,
(1.18) inf{]2(X) {FtX}t,o,r) A, P((X(O),

X( dxdy) B }
inf{]2(X) {Ftx} t(o,r) A, P((X(0),

X( dxdy) B
{X(t)}o<t<_T is a reciprocal processt

2. Multidimensional ease. In this section
we consider {P1) when d > 1 and give the ap-
plication to the stochastic control theory.

Theorem 2.1. Let {p(t, x)}t>o be a family of
probability density functions on R d. Then there ex-

ists a Rd-valued Markov process {X(t)}t> o on a
probability space (Y2, B, P) such that
(2.1)
P(X(t) dx) p(t, x)dx for all t [0, o).

Outline of Proof. Put for t >-- 0 and xl,’" ",

xR,

f_x f (2.2) F(t, x) d p(t (, ))d
d-I

F<t, x x,’--, X_l)

dy, ,_,p(t. (Xl,’’" Xk_l, Yk’ Z))

dz /(,_/,,. p (t, (Xl, XK_I, Z) ) dz)

if the denominator is positive,
0 otherwise,

for k 2,--" d. Then for t _> 0, k 2,’--d, and

Xl,’’’,XE_I R, Fl(t, x) and Fk(t, x Ix1,’’’,
x_l) are continuous in x.

For the standard Wiener process {W(t)}t> o

(see [4]), put for k 2,’-’d,
(2.3) X1 (t) cwI(I+’)({F1 (t,’)*} tlo,)) (t),

X (t)

{cW(l+)({F({t "lXl(t) X_x(t)) *}

if iP(t (X1 (t) X_I (t) z)) dz :/: O,
d-k+

Wk (1 4- t) otherwise

(see (1.3) for notation). Then it is easy to see that
{(Xl(t), ", Xd(t))}t>_ o is a Markov process
which satisfies (2.1), inductively in k, since W
and Wj (i 4= j) are independent of each other,
and since W(’) is a Markov process (see [4]).

Q.E.D.
Next we give the application to the stochas-

tic control (see [3]).
Fix T > 0 and a probability space (tg, B,

P). Let k(t, x) [0, T] RdR and G(x) :R d

R be bounded measurable, and put for a
Rd-valued stochastic process {X(t)}o<t<_r on

(9, B, P),

(2.4) J(X) =- E k(t, X(t))dt + G(X(T))

The following theorem can be easily
obtained from Theorem 2.1, and the proof is

omitted.
Theorem 2.2. For any subset A of the set of

all familes of {Ft}tIo,rl of continuous distribution
functions on R d,
(2.5) inf{J(X) {FtX}tto,r A}

inf{J(X) {Ftx}tI0,T] A, {X(t)}ogt_<T is a
Markov processl
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