On Power Series Attached to Local Densities

By Hidenori KATSURADA

Muroran Institute of Technology (Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1995)

Let p be a prime number different form 2. For non-degenerate symmetric matrices S and T of degrees s and $t(s \ge t \ge 1)$, respectively, with entries in the ring \mathbb{Z}_p of p-adic integers, we define the local density $\alpha_p(T, S)$ by

$$\alpha_p(T, S) = \lim_{e \to \infty} \# \mathcal{A}_e(T, S),$$

where

$$\mathcal{A}_{e}(T, S) = \{X \in M_{mn}(\mathbf{Z}_{p})/p^{e}M_{mn}(\mathbf{Z}_{p}); \\ S[X] - T \in p^{e}M_{mn}(\mathbf{Z}_{p})\}.$$

For the precise definition, see [2]. In [2] we defined a formal power series $P(T, S; x_1, \ldots, x_t)$ by

$$P(T, S; x_1, ..., x_t) = \sum_{r_1, ..., r_t=0}^{\infty} \alpha_p(T[\operatorname{diag}(p^{r_1}, ..., p^{r_t})], S) x_1^{r_1} ... x_t^{r_t}.$$

In [3] we showed that $P(T, S; x_1, \ldots, x_t)$ is a rational function of x_1, \ldots, x_t over the field Q of rational numbers for arbitrary S and T. In [4] we gave an explicit form of its denominator for the case where T is a diagonal matrix. In view of the theory of Siegel Eisenstein series, it is important to give a precise information on its denominator and numerator for the case where $S = \frac{1}{2}$

$$\begin{pmatrix} 0 & E_k \\ E_k & 0 \end{pmatrix}$$
 with $k > t + 1$ (cf. Kitaoka [7]).

In the present paper, we give a more precise form of its denominator and the degree of its numerator for the case where S is a unimodular matrix of degree not smaller than $2 \deg T$. To state our first main result, for integers n, β, γ , put

$$\Delta(n, \beta, \gamma) = \{\{i_1, \ldots, i_{\beta}, j_1, \ldots, j_{\gamma}\}; \\ 1 \le i_1 < \ldots < i_{\beta} \le n, \ 1 \le j_1 < \ldots < j_{\gamma} \le n, \\ \{i_1, \ldots, i_{\beta}\} \cap \{j_1, \ldots, j_{\gamma}\} = \emptyset\}.$$

Then we have

Theorem 1. Assume that $s \ge 2t$, and that T is a diagonal matrix. Then the denominator of $P(T, S; x_1, \ldots, x_t)$ is of the following form: $\prod_{t=1}^{t} \prod_{t=0}^{t-\beta} \prod_{t=0}^{t-\beta} (1-p^{\beta(-s+t+r+1)}x_t, x_t, x_t, x_t))$

$$\prod_{\beta=1}^{r}\prod_{\gamma=1}^{r}\prod_{(i_1,\ldots,i_\beta,j_1,\ldots,j_\gamma)}(1-p^{\beta(-s+t+\gamma+1)}x_{i_1}\ldots x_{i_\beta}x_{j_1}\ldots x_{j_\gamma})$$

$$\times \prod_{i=1}^{t} (1-p^{-s+t+1}x_i) \prod_{i=1}^{t} (1-x_i),$$

here $\{i_1, \ldots, i_{\beta}, j_1, \ldots, j_r\}$ runs over all eleme

where $\{i_1, \ldots, i_\beta, j_1, \ldots, j_\gamma\}$ runs over all elements of $\Delta(t, \beta, \gamma)$.

Corollary. For any $1 \le i \le t$ the degree of the denominator of $P(T, S; x_1, \ldots, x_s)$ with respect to x_i is $(t-1)2^{t-2} + 2$, and therefore its total degree is $t((t-1)2^{t-2} + 2)$.

The above theorem can be proved by a careful analysis of the proof of [4, Theorem 1.2] and its corollary. We note that it cannot be derived from the result of [5]. We also note that it gives a more precise result than that of [3]. In fact, put

$$\Gamma(n, \beta, \gamma) = \{(\{i_1, \ldots, i_{\beta}\}, \{j_1, \ldots, j_{\gamma}\}); \\
 1 \le i_1 < \ldots < i_{\beta} \le n, \ 1 \le j_1 < \ldots < j_{\gamma} \le n, \\
 \{i_1, \ldots, i_{\beta}\} \cap \{j_1, \ldots, j_{\gamma}\} = \emptyset \}.$$

We note that $\{i_1, \ldots, i_\beta, j_1, \ldots, j_r\}$ and $(\{i_1, \ldots, i_\beta\}, \{j_1, \ldots, j_r\})$ are distinguished. In fact it happens that $\{i_1, \ldots, i_\beta, j_1, \ldots, j_r\} = \{i'_1, \ldots, i'_\beta, j'_1, \ldots, j'_r\}$ even if $(\{i_1, \ldots, i_\beta\}, \{j_1, \ldots, j_r\}) \neq (\{i'_1, \ldots, i'_\beta\}, \{j'_1, \ldots, j'_r\})$. Then in [2, Theorem 1.1], we have proved that under the same assumption as above the possible denominator of $P(T, S; x_1, \ldots, x_r)$ is

(1.1)
$$\prod_{\beta=1}^{t} \prod_{\gamma=0}^{t-\beta} \prod_{(\{i_1,\ldots,i_{\beta}\},\{j_1,\ldots,j_{\gamma}\})} (1-p^{\beta(-s+t+\gamma+1)}x_{i_1}\ldots x_{i_B}x_{j_1}\ldots x_{j_{\gamma}}) \prod_{i=1}^{t} (1-x_i),$$

where $(\{i_1, \ldots, i_\beta\}, \{j_1, \ldots, j_\gamma\})$ runs over all elements of $\Gamma(n, \beta, \gamma)$. Here we make the convention that $x_{i_1} \ldots x_{i_\gamma} = 1$ if $\gamma = 0$. Let t = 2, and $s \ge 4$. According to (1.1), the possible denominator of $P(T, S; x_1, x_2)$ is

$$(1 - p^{2^{(-s+3)}} x_1 x_2) (1 - p^{-s+3} x_1) (1 - p^{-s+3} x_2) (1 - p^{-s+4} x_1 x_2)^2 (1 - x_1) (1 - x_2),$$

while by the Theorem 1 in this paper, it is

$$(1 - p^{-s+3}x_1)(1 - p^{-s+3}x_2)(1 - p^{-s+4}x_1x_2)$$

W

$$\begin{array}{cccc} p & x_1^{-1} (1-p) & x_2^{-1} (1-p) & x_1^{-1} \\ & (1-x_1) (1-x_2). \end{array}$$

Now our next main result is the following:

Theorem 2. In addition to the notation and the assumption in Theorem 1, assume that S is a unimodular matrix. Then for any $1 \le i \le t$ the deThe above theorem can be also proved by a careful analysis of the proof of [4, Theorem 1.2]. As Corollary to Theorem 1 and Theorem 2, we have

Corollary. Let the notations be as above. Then the degree of numerator of $P(T, S; x_1, \ldots, x_t)$ with respect to x_i is at most $(t-1)2^{t-2} + 1$ for any $1 \le i \le t$, and therefore its total degree is at most $t((t-1)2^{t-2} + 1)$.

For $T = \text{diag}(b_1, \ldots, b_t)$, we define a formal power series $Q(T, S; x_1, \ldots, x_t)$ by

$$Q(T, S; x_1, \dots, x_t) = \sum_{\substack{r_1, \dots, r_t=0 \\ r_1 \neq t_1}}^{\infty} (\operatorname{diag}(p^{r_1}b_1, \dots, p^{r_t}b_t), S) x_1^{r_1} \dots x_t^{r_t}$$

which was introduced by Böcherer and Sato [1]. Thus by Theorems 1 and 2, we easily obtain

Theorem 3. (1) Let the notation and the assumptions be as in Theorem 1. Then the possible denominator of $Q(T, S; x_1, \ldots, x_t)$ is of the following form:

$$\prod_{\beta=1}^{t} \prod_{\gamma=1}^{t-\beta} \prod_{\substack{\{i_1,\ldots,i_{\beta},j_1,\ldots,j_{\gamma}\}\\ i=1}} (1-p^{\beta(-s+t+\gamma+1)}x_{i_1}^2 \dots x_{i_{\beta}}^2 x_{j_1}^2 \dots x_{j_{\gamma}}^2) \\ \times \prod_{i=1}^{t} (1-p^{-s+t+1}x_i^2) \prod_{i=1}^{t} (1-x_i^2),$$

where $\{i_1, \ldots, i_\beta, j_1, \ldots, j_\gamma\}$ runs over all elements of $\Delta(t, \beta, \gamma)$.

(2) Let the notation and the assumptions be as in Theorem 2. Then for any $1 \le i \le t$, the degree of $Q(T, S; x_1, \ldots, x_t)$ with respect to x_i is at most -1, and therefore the total degree of it is at most -t.

We note that (2) of the above theorem gives a certain generalization of the result of [7] on the numerator of the power series.

Example. Let A be a unimodular symmetric matrix of degree 2k with entries in \mathbb{Z}_p , and b_1 and b_2 *p*-adic units. Put $\varepsilon = \chi((-1)^k \det A)$, and $\eta = \chi(-b_1b_2)$, where χ is the quadratic

character of Z_p modulo p. Then we have

$$P(B, A; x_1, x_2) = (1 - p^{-2k+3}x_1)^{-1}(1 - p^{-2k+3}x_2)^{-1} (1 - p^{-2k+4}x_1x_2)^{-1}(1 - x_1)^{-1}(1 - x_2)^{-1} \times (1 - \varepsilon p^{-k})(1 + \varepsilon \eta p^{1-k})R(x_1, x_2),$$

where

$$\begin{aligned} & = 1 - p^{1-k} \varepsilon \eta (x_1 + x_2) + (p^{1-k} \varepsilon \eta + p^{2-k} \varepsilon - p^{3-2k} \\ & - p^{3-2k} \eta + p^{4-3k} \eta \varepsilon + p^{5-3k} \varepsilon) x_1 x_2 \\ & - p^{5-3k} \varepsilon x_1 x_2 (x_1 + x_2) + p^{6-4k} \eta x_1^2 x_2^2 \\ & = (1 - \varepsilon \eta p^{1-k}) (1 + \varepsilon p^{2-k} x_2) (1 - p^{3-2k} x_1 x_2) \end{aligned}$$

 $= (1 - \varepsilon \eta p^{1-k}) (1 + \varepsilon p^{2-k}) (1 - p^{3-2k} \eta x_1 x_2)$ $+ p^{3-2k} (\eta + 1) (1 - x_1) (1 - x_2)$ $according as <math>B = \text{diag}(b_1, b_2), \text{ diag}(b_1, pb_2), \text{ or}$

diag(pb_1 , pb_2). The above example may be considered as a

reformulation of [6, Theorem 2, (1), (2)]. It shows that Theorems 1 and 2 are best possible.

References

- S. Böcherer and F. Sato: Rationality of certain formal power series related to local densities. Comment. Math. Univ. St. Paul., 36, 53-86 (1987).
- [2] H. Katsurada: A generalized Igusa local zeta function and local densities of quadratic forms. Tôhoku Math. J., 44, 211-218 (1992).
- [3] H. Katsurada: Rationality of formal power series attached to local densities of quadratic forms. Manuscripta Math., 82 (1994).
- [4] H. Katsurada: A certain formal power series of several variables attached to local densities of quadratic forms. I. J. Number Theory, 51, 169-209 (1995).
- [5] H. Katsurada: A certain formal power series of several variables attached to local densities of quadratic forms. II. Proc. Japan Acad., 70A, 208-211 (1994).
- [6] Y. Kitaoka: A note on local densities of quadratic forms. Nagoya Math. J., 92, 145-152 (1983).
- Y. Kitaoka: Local densities of quadratic forms and Fourier coefficients of Eisenstein series. Nagoya Math. J., 103, 149-160 (1986).

 α_{b}