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Abstract: In this note we show that there exists A such that, for every / (0, Ao), the

0u
problem: Au /uq+ W(x)up

in , u > 0 in K2,= 0 on 02, where 2cR
N

is a bounded

convex domain with smooth boundary, 0 < q < I < p and W CI(), has a solution ua iff

< O. Moreover: L-+o o.as

1. Introduction. In this note we study the
Neumann problem for a class of semilinear ellip-
tic equations.
Let c RN

be a bounded convex domain with
smooth boundary and consider the semilinear
elliptic problem:

Au-- 2u + W(x) ut’ in Q,

(la) u> 0 in,
Ou- 0 on

where 0 < q < 1 < p and W Ct(). The
influence of negative part of W is displayed in
the following condition:

W(x)dx < O.

As it turns out, condition (*) was inspired by a
corresponding necessary condition derived in [2].
The corresponding Dirichlet problem:

Au 2u + u’ x [2

u>O x
u-O x,

with 0 < q < 1 < p, has been extensively stu-
died in the paper of Ambrosetti, Brezis and Cera-
mi [1]. Moreover, by the results of Boccardo,
Escobedo and Peral [4], these results are ex-
tended for the p-laplacian. The purpose of the
present note is to study (la) and our main result
is the following:

Theorem 1.1. If (*) is satisfied, then there
existsAo R,Ao > 0, such that, for all 2
(0, A0), problem. (la) has a solution u and

*) Partially supported by a CNCSU-Grant n

132\95.

Ilu ll  0 as/ 0.
The proof of the above theorem uses only
elementary tools. It is based on the construction
of explicit sub and super solutions for (la) and
the application of the Sattinger results (see [6]).

2. The existence result.
Lemma 2.1. Suppose there exists 2 > 0

such that the problem (12) has a solution u.
Then necessarily the condition (*) must hold.

Proof For each e > 0 put:
1

(u + )-f(ua) 1--p
We observe that:

p(u) (u + ) (u + W(x)u)
+ p(ua + t)--X]Vua ] in Q,

L(u) u
n (u + t)- n 0 on .

Hence:
u dxW(x)

(u + s)

p(. + s)--lg. Idx +
( + s)

It follows that there exists 6 > 0 such that:
ua dx < < 0, for all e (0,1)W(x)

(u + )
Letting e--* 0, we have:

fo W(x) dx

_
( < O.

Throughout, in the following, we suppose that the
condition ($) is satisfied.

Lemma 2.2. For all 2 0, there exists a
subsolution _ua, strictly positive in .Q, for the
problem (la).
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where:

Proof. From [5], we know that the problem:

Au 2 W(x) u inoQ

u>0 in.O
0u
-0---- 0 on 0/2

has the first eigenvalue 21 > 0 and the associ-
ated first eigenfunction 91 is strictly positive in

Let e > 0. Any e9 is a subsolution of (1), pro-
vided"

e/1W(x) 91 A (e91) --< / e
q
g -- W(x .,p9101p

which is satisfied for all e (0, eo), with o
eo() small enough.
Now, we put _u 91 with (0, eo) and this
ends the proof.

Lemma 2.3. There exists Ao R, Ao > 0,
such that, for every (0, Ao), the problem
(1) has a supersolution a.

We observe that, since LW(x) dxProofi

< 0, there exists > 0 such that:

V/ (z) dx < 1 + 8 W- (x) dx

Let

W+ (x) max { W(x), 0), W- (x)
max{-- W(x), 0}, x 9.

8 + 1 whe 8 ]
max{nZ’n< 2+6}6 and let:

E- v cl(,) vdx-- O, V I]oo <- -where k R, k> O. Denote by H(x, v) the
quantity:
H (x, + W(x)v

1
vo19 (2Iv / W(x) v dx, x 9.

Observe that if v Ek then H(x, k+ v)
C(D), since k + v > 0 on , and:
]H(x, k +

for every x Q and v Ek. It is well know,
since H(x, k+ v) Cl() for v E and

since . H(x, k + v)dx- O, that the problem:

--Af=H(x, k+ v) in9
of 0 on 09

is solvable (see, for example, [3], Teorema 7.1.,

pp. 76-78) and there exists a unique solution

C (9) f3 C (,0) verifying: ffdx O. Forf
this solution a priori bounds are available. In
fact, for all r > 1, there exists a constant cr O,
independent of 2, such that:

f <- Cr H (x, k + v)
Then, for r > N, it follows that:

f H (x, k + v)

where c is a ositive constant which is indepen-
dent of 2.
Observe that there exist 20, ko > 0 such that:

Ilfll ko
m’ for all (0, o). Hence the

application: vf is well-defined and maps the
convex closed set Eo into a precompact subset of

E$o" By Schauder’s theorem, we obtain a function
v Eo such that:

*)A v* H(x, ko+ v in

v*- 0 on
,

Let v + ko. We have that:

for every 2 (0, 20). Observe that:

1

_ _
Now, we prove that:

for all 2 (0, 20). We have:

W+ (x)dx g k 1 + W + (x) dx

(1 + 8)
W-(x)dx

1 +1 )

W (x)udx.
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Since 1 + 1 < 1, by the definition

of m, we obtain that:

W(x)  dx < o.
As a consequence, we can find 2o > 0 such that,
for all (0, )), we have"

+ W(x) dx <_ o.
Put Ao min(o, ) and we observe that, for
every (0, Ao), the problem (1) has a super-
solution such that:

Proof f herem 1.1. Let 2 (0, Ao).
Clearly, from the roofs of Lemmas 2.2. and 2..,
there exists a subsolution N and a supersolution, for the problem (1), such that N N . From
the result of Sattinger (see [6]), we obtain a solu-
tion u for (1) such that u in D. To
complete the proof, it remains to show that
0 asR 0. But, from the proof of Lemma 2.3.,

we o  erve II. II.  0(1 +
for every R (0, Ao). Clearly, following the
arguments used in this proof, for Ro > 0 suffi-
ciently small, we can choose k0 > 0 arbitrary
small. This completes the proof.
Denote by A the quantity"

A sup{R > 0" (la) has solution}.
Clearly: A Ao > 0.

Prosition 2.1. For all 2 (0, A) the
problem (la) has a solution.

Proof. This proof is inspired by the proof of
Lemma 3.2. in [1]. Let 0 < R <A and let p
(/, A)such that uv, is a solution of (lv). It is
easy to show that uv is a supersolution for (la).
Choosing e > 0 sufficiently small, we have that
eq < uv and, from the results of Sattinger (see
[6]), it follows that (la) has a solution.
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