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1. Introduction. Let G be a noncompact
connected semisimple Lie group with finite center
and P MAN a parabolic subgroup of G. Let 7G

Ind,(1 ( e @ 1) (/ ac*) denote a principal
series representation of G and (7G, L2(/r
-2(H())

e d) (2r 0(N)) the noncompact pic-
ture of ra. Let a denote an irreducible unitary
representation of N corresponding to co
_*
nc and (S, ds) a subset of MA with measure ds.
In the previous paper [3] we supposed that there
exists a b ’(N) satisfying the following
admissible condition: for all co V

(i) a(p)a(b)* n(w)I,
0 < jn(Ad(s)o9)ds Cs, <()

where Cs, is independent of o9 (see [3] for the
notations). Then for all such we can deduce the
inversion formula:

f(x) Cs,,
s

rc_o (as) (p (x) dads for all f s3(N),
where (’,-) is the inner product of L2(/0. A
number of well-known examples of wavelet
transforms arises from this scheme through the
explicit form of b. However, in the case of G-
SL(n + 2, R) (n >_ 1) and N Hn, the (2n + 1)-
dimensional Heisenberg group, the above formula
does not cover the three examples constructed by
Kalisa and Torr6sani (see [4, IV]). Therefore, in
order to obtain a widespread application we need
to generalize this formula. In this paper we sup-
pose that S is an arbitrary measurable set with
map 1" S-- G and then we shall consider a dis-
tribution vector b in ’(N)which depends on
sS.

2. Main theorem. We retain the notations
in [3] except that (S, ds) is an arbitrary measur-
able set with map 1" S---* G. Let be a family
of bs ’(N) with parameter s S. We call the
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quartet 9A (/, S, 1, satisfies the admissible
condition if for all o9 V and F Le(R k)

fs Cr(zr(l(s)bs))r(zr (l(s)bs)) *Fds cF
Lwhere is realized on (R) (see 3) and c is

independent of w.
Theorem 1. Let (, S, 1, satisfy the

admissible condition. Then,

f(x c f, (l(s s )
xS

(l(s)) s (x) dds for all f (.
ProoZ As shown in [2] it is enough to prove that

( f, a (’) s ) II  , ,ds f
where s- a(l(s))$s. Since a((f, a(’)s))

a(f)a (s)*, it follows from the Plancherel
formula for L2( that

f, Ss

ff (f)(s)*

Ltr(a.(f)%(s)*ao(s)dsa(f)*)a()d
3. Admissible condition. In what follows

we assume that
(A0) l(S) HA,

and we shall obtain a sufficient condition of
(, S, l, under which is admissible. Let q
be a polarizing subalgebra for all V and Q
the corresponding analytic subgroup of N. We

2ffi(Y)
put k codim, x(exp e (Y ),
and exp x(n)r(t()) (x(n) , t(n) )
where T’R is a cross-section for Q.
Then ao Ind(z) and it is realized on
L(n) as a()F(t) x(X(r(t)n))F(t(r(t)n))
(cf. [1, p.125]). Here we recall that l(s) MA
and a weak Malcev basis consists of root vectors
for (G, A). Thus Ad(l(s)) stabilizes Q and
Q respectively. Here we suppose that

(A1) q is ideal,
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(A2) Cs(qr(t)) (q)Zo(s,(q)6(t)A(s)
(qQ, tR),

where 6 is the Dirac function on RE. For each
s S, q Q, t, t0 RE

it follows that 7"(to)
Ad(l(s)) (qr(t)) Ad(r(to) l(s)) q r(to)Ad(l(s)) r(t)
where Ad(r(to)l(s))q Q and r(to)Ad(l(s))r(t)

T(t(s, t, to)) for some t(s, t, to R E. Then
for F L (R)
o (zc (l(s) ) Cs) F(to)

f s(l(s)-)%()F(to)d

e+o
log(s) f Cs(Ad(l(s)-l))a()F(to)d

e
(i2--p) log (s) f Cs()a (Ad(l(s)))F(to)d

(ia-o) og/(s)A fe (s) (q) 2:(s, (q)

;(Ad(r(to)l(s))q)dq f,, 6(t)F(t(s, t, to))dt
(i2--p) log/(s)

e A(s) b(Ad (r(to)l(s))w +
w(s))F(to),

where logl(s) -lOg as if l(s) rnsa MA.
Therefore, we can deduce that ao(zc(l(s))s)"
ao(zr(l(s)) Cs) is the multiplication operator on

L2(R E) corresponding to

rna os (t) e
-<a+) log I($’ A (S) 12

I’(Ad*(r(t)l(s))oo / oo(s)) .
Next we identify q with R (m- dimq)and
define the (m, m)-matrix L(s) by

*)Ad*(l(s))X L(s)X (X q
We assume the following,

(A3) there exist a measurable set (U, du)
for which

S- U x R" and ds dudx,
(A4) there exist (m, m)-matrices A(s),

Cj(u) for which
OL(s) -(a) Oxj A(s)C(u) (1 N j N m),

(Ah) co(s) L(s)h(s) (h(s) R’) and
there exist d(u) Rm

such that
Oh(s)

(b) Ox =A(s)d(u) (1 NjNm),

(A6)
--2(tl+O) log l(s) F($).e det L(s)A (s) I- lA (s)

Then it follows that

sm,o,s(t)ds fs )(L(s)oo" + oo(s)) .
det L(s)A(s) [F(u)ds,

where co’= Ad*(T(t))co. Here we change the
variable s- (u, x) to s’= (u’, ) according to

the map ff,," S S defined by

L(s)co" + co(s) L(s)(co" + h(s)).
Since

L(s)A(s)C(u)L(s)(w" + h(s)) +
L(s)A(s)d(u)

L(s)A(s)(C(u)- d(u)),
the Jacobian of o, is given by
(c) det(L(s)A(s)) det(C(u) @ - D(u)),
where C(u) (C(u),..., Cm(U)) and D(u)
(d(u),..., dm (u)). Therefore, if we furthermore
assume that

(AT) , is of class C and 1"1 outside a set
of measure zero,

(A8) 0 < 14(o [ det(C(u)@
o,(UxRm)

D(u)) I-F(u) ddu c <
then we can deduce that

0 < Jr m’’s(t)ds- c <
Theorem 2. If 92 (, S, l, gO satisfies

(A0)-(A8), then 92l is admissible.
Remark 3. Let 92 be an admissible quartet

in Theorem 2. Since Cs is the Dirac function with
respect to t R (see (A2)), Theorem 1 essen-
tially gives an inversion formula for .3(Q). On
the other hand, instead of (A1) and (A2) we sup-
pose that

(A1)’ q is ideal and q \ fi is abelian,
(A2)’ (qr(t)) 8(q)e (t)A(s)

(q Q, t R),
where 8 is the Dirac function on Q. Then it is
easy to see that ao(zc(l(s))bs) is the Fourier

L (-o) log l(s)
multiplier on (RE) corresponding to e
A(s):K(Ad*o(l(s))+ (s)) where o is the
Fourier transform of and Ado is defined by
Ad(l(s) r(t)) 7(Ado(l(s)) t). Therefore, replacing
R Rk

with we can develop the quite same argu-
ment on (A3)-(A8) and then, we can deduce an in-
version formula for (Q\//). If we combine these
two formulas for (Q) and (Q\/, we can de-
duce the one for (N).

4. Examples. We shall give some examples
of L(s)and h(s)which satisfy (a) and (b) respec-
tively.

(al) L(s)-- xlC(u) + x2C2(u) + +
xC(u) + Co(u),

where Co(u) is a (m, m)-matrix. Then (a) is satis-
fied with A(s) I.
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(a2) L(s) -1 exp(xlCl(u) + x2C2(u) -+- +
XmCm (u) + Co (u)) and A (s) L (s) --1.
(a3)
L(s) -1 diag (eBl(s),eB(s),... eE’’(s>) Co(u),

here /3j(s)is the j-th entry of B(u)x+ bo(u)
where B(u)- (bj(u))is a (m, m)-matrix and
bo(u) Rm. Then (a)is satisfied with A(s)=
diag(ee ee) and C(u) diag(b(u)
b2 (u),..., bm (U)) Co (u).

(bl) h(s) ho(u) and d(u) O,
(52) h(s) L(s)-ibo(u) and

dj (u) C (u) bo (u),
(b3) h(s) D(u)x + bo(u) provided A(s) I.
Remark 4. Let U be a subgroup of GL(m, R)

(see (A3)) and put det(C(u) (g) D(u))
(see (c)). (1) We define L(s) by (al) with C(u)
uI and Co(u) =fuI(e,fR), and h(s) by
(b3) with D(u) I and bo(u) 0. Then L(s) -(< , x > + f)u (- (, ,, m)),
oo,(U Rm) U Rm, and

[det(E(g) u--/) I1-- (E, ue)l.
(2) We suppose that there exists v Rm

such
that v ( D(u) C(u). Then

det D(u) l[ det(v(R) -/)l
--Idet D(u)[ 1 ( v, > I.

In this case v@A(s)D(u) =A(s) C(u) and

v Vh(s) (OL(s)- OL(s)-)OX OXm
(3) Let U- {e} and S Rm. We define L(s) by
(al) and h(s)by (b3) with D= I and bo= 0.
Then L(s)-- C ( x + Co, Y,(Rm) o,,(Rm)

where eo, (X) (C ( x -]- Co)-1 ((Lt -{- X), and

= det(C(R)--/) I.
When G SL(n + 2, R) (n >- 1) and N

Hn, it is easy to construct the map l" S MA
for which L(s) is of the above form. Then these
examples (1)-(3) yield the inversion formulas
(a)-(c) in [4, IV] respectively.

Remark 5. Let S- Rm. We define L(s) by
(a3) with Co- I, B diag(al, a2, am)
(a 4:0 R) and b0= 0, and we let h(s) O.
Then (A4) is satisfied with A(s) L(s) - and Cj
aE, (A6) with p, A(s) ------ 1, and F--

m1. Especially, ,(Rm) II= sgn (o)) R+
mDsgno’ and - II= aje [. This is the case tre-

ated in [3, 5].
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