Wavelet Transforms Associated to a Principal Series Representation of Semisimple Lie Groups. II

By Takeshi KAWAZOE
Department of Mathematics, Keio University
(Communicated by Kiyosi ITÔ, M. J. A., Sept. 12, 1995)

1. Introduction. Let G be a noncompact connected semisimple Lie group with finite center and $P=M A N$ a parabolic subgroup of G. Let π_{λ} $=\operatorname{Ind}_{P}^{G}\left(1 \otimes e^{\lambda} \otimes 1\right)\left(\lambda \in \mathfrak{a}_{C}^{*}\right)$ denote a principal series representation of G and $\left(\pi_{\lambda}, L^{2}(\bar{N}\right.$, $\left.e^{-2 \Im \lambda(H(\bar{n}))} d \bar{n}\right)(\bar{N}=\theta(N))$ the noncompact picture of π_{λ}. Let σ_{ω} denote an irreducible unitary representation of \bar{N} corresponding to $\omega \in$ $\overline{\mathfrak{n}}_{c}^{*}$ and $(S, d s)$ a subset of $M A$ with measure $d s$. In the previous paper [3] we supposed that there exists a $\psi \in \mathscr{\delta}^{\prime}(\bar{N})$ satisfying the following admissible condition: for all $\omega \in V_{T}^{\prime}$
(i) $\sigma_{\omega}(\psi) \sigma_{\omega}(\psi)^{*}=n_{\psi}(\omega) I$,
(ii) $0<\int_{S} n_{\psi}(A d(s) \omega) d s=c_{S, \psi}<\infty$,
where $c_{S, \psi}$ is independent of ω (see [3] for the notations). Then for all such ψ we can deduce the inversion formula:

$$
\begin{aligned}
& f(x)=c_{S, \psi}^{-1} \iint_{\bar{N} \times S}\left\langle f, \pi_{-i \rho}(\bar{n} s) \phi\right\rangle \\
& \pi_{-i \rho}(\bar{n} s) \phi(x) d \bar{n} d s \quad \text { for all } f \in \mathscr{S}(\bar{N})
\end{aligned}
$$

where $\langle\cdot, \cdot\rangle$ is the inner product of $L^{2}(\bar{N})$. A number of well-known examples of wavelet transforms arises from this scheme through the explicit form of ψ. However, in the case of $G=$ $S L(n+2, \boldsymbol{R})(n \geq 1)$ and $\bar{N} \cong H_{n}$, the $(2 n+1)$ dimensional Heisenberg group, the above formula does not cover the three examples constructed by Kalisa and Torrésani (see [4, IV]). Therefore, in order to obtain a widespread application we need to generalize this formula. In this paper we suppose that S is an arbitrary measurable set with $\operatorname{map} l: S \rightarrow G$ and then we shall consider a distribution vector ψ in $\mathscr{S}^{\prime}(\bar{N})$ which depends on $s \in S$.
2. Main theorem. We retain the notations in [3] except that $(S, d s)$ is an arbitrary measurable set with map $l: S \rightarrow G$. Let Ψ be a family of $\psi_{s} \in \mathscr{S}^{\prime}(\bar{N})$ with parameter $s \in S$. We call the

1991 Mathematics Subject Classification. Primary 22E30; Secondary 42C20.
quartet $\mathfrak{A}=(\lambda, S, l, \Psi)$ satisfies the admissible condition if for all $\omega \in V_{T}^{\prime}$ and $F \in L^{2}\left(\boldsymbol{R}^{k}\right)$

$$
\int_{S} \sigma_{\omega}\left(\pi_{\lambda}\left(l(s) \psi_{s}\right)\right) \sigma_{\omega}\left(\pi_{\lambda}\left(l(s) \psi_{s}\right)\right)^{*} F d s=c_{\mathfrak{Q}} F
$$

where σ_{ω} is realized on $L^{2}\left(\boldsymbol{R}^{k}\right)$ (see §3) and $c_{\mathfrak{Q}}$ is independent of ω.

Theorem 1. Let $\mathfrak{A}=(\lambda, S, l, \Psi)$ satisfy the admissible condition. Then,

$$
\begin{gathered}
f(x)=c_{\mathfrak{M}}^{-1} \iint_{\bar{N} \times s}\left\langle f, \pi_{\lambda}(\bar{n} l(s)) \phi_{s}\right\rangle \\
\pi_{\lambda}(\bar{n} l(s)) \psi_{s}(x) d \bar{n} d s \text { for all } f \in \&(\bar{N}) .
\end{gathered}
$$

Proof. As shown in [2] it is enough to prove that

$$
\int_{S}\left\|\left\langle f, \pi_{\lambda}(\cdot) \Psi_{s}\right\rangle\right\|_{L^{2}(\bar{N})}^{2} d s=c_{\mathfrak{Q}}\|f\|_{L^{2}(\bar{N})}^{2}
$$

where $\Psi_{s}=\pi_{\lambda}(l(s)) \psi_{s}$. Since $\sigma_{\omega}\left(\left\langle f, \pi_{\lambda}(\cdot) \Psi_{s}\right\rangle\right)$ $=\sigma_{\omega}(f) \sigma_{\omega}\left(\Psi_{s}\right)^{*}$, it follows from the Plancherel formula for $L^{2}(\bar{N})$ that

$$
\begin{aligned}
& \int_{S}\left\|\left\langle f, \pi_{\lambda}(\cdot) \psi_{s}\right\rangle\right\|_{L^{2}(\bar{N})}^{2} d s \\
= & \int_{S} \int_{V_{T}^{\prime}}\left\|\sigma_{\omega}(f) \sigma_{\omega}\left(\Psi_{s}\right)^{*}\right\|_{H S}^{2} \mu(\omega) d \omega d s \\
= & \int_{V_{T}^{\prime}} \operatorname{tr}\left(\sigma_{\omega}(f) \int_{S} \sigma_{\omega}\left(\Psi_{s}\right)^{*} \sigma_{\omega}\left(\Psi_{s}\right) d s \sigma_{\omega}(f)^{*}\right) \mu(\omega) d \omega \\
= & c_{\mathfrak{U}}\|f\|_{L^{2}(\bar{N})}^{2} .
\end{aligned}
$$

3. Admissible condition. In what follows we assume that

$$
(\mathrm{A} 0) \quad l(S) \subset M A
$$

and we shall obtain a sufficient condition of $\mathfrak{A}=$ (λ, S, l, Ψ) under which \mathfrak{A} is admissible. Let \mathfrak{q} be a polarizing subalgebra for all $\omega \in V_{T}^{\prime}$ and Q the corresponding analytic subgroup of \bar{N}. We put $k=\operatorname{codimq}, \chi_{\omega}(\exp Y)=e^{2 \pi i \omega(Y)}(Y \in \mathfrak{q})$, and $\bar{n}=\exp X(\bar{n}) \gamma(t(\bar{n}))\left(X(\bar{n}) \in \mathfrak{q}, t(\bar{n}) \in \boldsymbol{R}^{k}\right)$ where $\gamma: \boldsymbol{R}^{k} \rightarrow \bar{N}$ is a cross-section for $Q \backslash \bar{N}$. Then $\sigma_{\omega}=\operatorname{Ind}_{Q}^{\bar{N}}\left(\chi_{\omega}\right)$ and it is realized on $L^{2}\left(\boldsymbol{R}^{k}\right)$ as $\sigma_{\omega}(\bar{n}) F(t)=\chi_{\omega}(X(\gamma(t) \bar{n})) F(t(\gamma(t) \bar{n}))$ (cf. [1, p.125]). Here we recall that $l(s) \in M A$ and a weak Malcev basis consists of root vectors for (G, A). Thus $A d(l(s))$ stabilizes Q and $Q \backslash \bar{N}$ respectively. Here we suppose that (A1) \mathfrak{q} is ideal,
(A2) $\psi_{s}(q \gamma(t))=\psi(q) \chi_{\omega(s)}(q) \delta(t) \Delta(s)$

$$
\left(q \in Q, t \in \boldsymbol{R}^{k}\right)
$$

where δ is the Dirac function on $\boldsymbol{R}^{\boldsymbol{k}}$. For each $s \in S, q \in Q, t, t_{0} \in \boldsymbol{R}^{k}$ it follows that $\gamma\left(t_{0}\right)$ $\operatorname{Ad}(l(s))(q \gamma(t))=\operatorname{Ad}\left(\gamma\left(t_{0}\right) l(s)\right) q \cdot \gamma\left(t_{0}\right) \operatorname{Ad}(l(s)) \gamma(t)$ where $A d\left(\gamma\left(t_{0}\right) l(s)\right) q \in Q$ and $\gamma\left(t_{0}\right) A d(l(s)) \gamma(t)$ $=\gamma\left(t\left(s, t, t_{0}\right)\right)$ for some $t\left(s, t, t_{0}\right) \in \boldsymbol{R}^{k}$. Then for $F \in L^{2}\left(\boldsymbol{R}^{k}\right)$

$$
\begin{aligned}
& \sigma_{\omega}\left(\pi_{\lambda}(l(s)) \psi_{s}\right) F\left(t_{0}\right) \\
= & \int_{\bar{N}} \psi_{s}\left(l(s)^{-1} \bar{n}\right) \sigma_{\omega}(\bar{n}) F\left(t_{0}\right) d \bar{n} \\
= & e^{(i \lambda+\rho) \log l(s)} \int_{\bar{N}} \psi_{s}\left(A d\left(l(s)^{-1}\right) \bar{n}\right) \sigma_{\omega}(\bar{n}) F\left(t_{0}\right) d \bar{n} \\
= & e^{(i \lambda-\rho) \log l(s)} \int_{\bar{N}} \psi_{s}(\bar{n}) \sigma_{\omega}(A d(l(s)) \bar{n}) F\left(t_{0}\right) d \bar{n} \\
= & e^{(i \lambda-\rho) \log l(s)} \Delta(s) \int_{Q} \phi(q) \chi_{\omega(s)}(q) \\
= & e^{(i \lambda-\rho) \log l(s)} \Delta(s) \hat{\phi}\left(A d^{*}\left(\gamma\left(t_{0}\right) l(s)\right) \omega+\right. \\
& \omega(s)) F\left(t_{0}\right),
\end{aligned}
$$

where $\log l(s)=\log a_{s}$ if $l(s)=m_{s} a_{s} \in M A$. Therefore, we can deduce that $\sigma_{\omega}\left(\pi_{\lambda}(l(s)) \psi_{s}\right)$. $\sigma_{\omega}\left(\pi_{\lambda}(l(s)) \psi_{s}\right)^{*}$ is the multiplication operator on $L^{2}\left(\boldsymbol{R}^{k}\right)$ corresponding to

$$
\begin{gathered}
m_{\lambda, \omega, s}(t)=e^{-2(\mathcal{F} \lambda+\rho) \log l(s)}|\Delta(s)|^{2} \\
\left|\phi\left(A d^{*}(\gamma(t) l(s)) \omega+\omega(s)\right)\right|^{2}
\end{gathered}
$$

Next we identify \mathfrak{q}^{*} with $\boldsymbol{R}^{m}(m=\operatorname{dim} \mathfrak{q})$ and define the (m, m)-matrix $L(s)$ by

$$
A d^{*}(l(s)) X=L(s) X \quad\left(X \in \mathfrak{q}^{*}\right)
$$

We assume the following,
(A3) there exist a measurable set $(U, d u)$ for which

$$
S=U \times \boldsymbol{R}^{m} \text { and } d s=d u d x
$$

(A4) there exist (m, m)-matrices $A(s)$, $C_{j}(u)$ for which
(a) $\frac{\partial L(s)^{-1}}{\partial x_{j}}=A(s) C_{j}(u) \quad(1 \leq j \leq m)$,
(A5) $\omega(s)=L(s) h(s) \quad\left(h(s) \in \boldsymbol{R}^{m}\right) \quad$ and
there exist $d_{j}(u) \in \boldsymbol{R}^{m}$ such that
(b) $\quad \frac{\partial h(s)}{\partial x_{j}}=A(s) d_{j}(u) \quad(1 \leq j \leq m)$,

$$
e^{-2(\mathfrak{F} \lambda+\rho) \log l(s)}|\operatorname{det} L(s) A(s)|^{-1}|\Delta(s)|^{2}=\Gamma(u)
$$

Then it follows that

$$
\begin{gathered}
\int_{s} m_{\lambda, \omega, s}(t) d s=\int_{s}\left|\hat{\phi}\left(L(s) \omega^{\prime}+\omega(s)\right)\right|^{2} \\
|\operatorname{det} L(s) A(s)| \Gamma(u) d s
\end{gathered}
$$

where $\omega^{\prime}=A d^{*}(\gamma(t)) \omega$. Here we change the variable $s=(u, x)$ to $s^{\prime}=\left(u^{\prime}, \xi\right)$ according to
the $\operatorname{map} \mathscr{T}_{\omega^{\prime}}: S \rightarrow S$ defined by

$$
\left\{\begin{array}{l}
u^{\prime}=u \\
\xi=L(s) \omega^{\prime}+\omega(s)=L(s)\left(\omega^{\prime}+h(s)\right)
\end{array}\right.
$$

Since

$$
\begin{aligned}
\frac{\partial \xi}{\partial x_{j}} & =-L(s) A(s) C_{j}(u) L(s)\left(\omega^{\prime}+h(s)\right)+ \\
& L(s) A(s) d_{j}(u) \\
= & L(s) A(s)\left(C_{j}(u) \xi-d_{j}(u)\right)
\end{aligned}
$$

the Jacobian of $\mathscr{T}_{\omega^{\prime}}$ is given by
(c) $\operatorname{det}(L(s) A(s)) \operatorname{det}(C(u) \otimes \xi-D(u))$, where $C(u)=\left(C_{1}(u), \ldots, C_{m}(u)\right)$ and $D(u)=$ ($\left.d_{1}(u), \ldots, d_{m}(u)\right)$. Therefore, if we furthermore assume that
(A7) $\mathscr{T}_{\omega^{\prime}}$ is of class C^{1} and $1: 1$ outside a set of measure zero,

$$
\begin{aligned}
& \text { (A8) } 0<\iint_{\mathscr{T}_{\omega^{\prime}\left(U \times \boldsymbol{R}^{m}\right)}}|\hat{\phi}(\xi)|^{2} \mid \operatorname{det}(C(u) \otimes \\
& \quad \xi-D(u))\left.\right|^{-1} \Gamma(u) d \xi d u=c_{\mathfrak{Q}}<\infty
\end{aligned}
$$

then we can deduce that

$$
0<\int_{S} m_{\lambda, \omega, s}(t) d s=c_{\mathfrak{\Re}}<\infty
$$

Theorem 2. If $\mathfrak{A}=(\lambda, S, l, \Psi)$ satisfies (A0)-(A8), then \mathfrak{A} is admissible.

Remark 3. Let \mathfrak{A} be an admissible quartet in Theorem 2. Since ψ_{s} is the Dirac function with respect to $t \in \boldsymbol{R}^{k}$ (see (A2)), Theorem 1 essentially gives an inversion formula for $\mathscr{\&}(Q)$. On the other hand, instead of (A1) and (A2) we suppose that
(A1) \mathfrak{q} is ideal and $\mathfrak{q} \backslash \overline{\mathfrak{n}}$ is abelian,
$(\mathrm{A} 2)^{\prime} \psi_{s}(q \gamma(t))=\delta(q) e^{2 \pi i\langle\xi(s), t\rangle} \psi(t) \Delta(s)$

$$
\left(q \in Q, t \in \boldsymbol{R}^{k}\right)
$$

where δ is the Dirac function on Q. Then it is easy to see that $\sigma_{\omega}\left(\pi_{\lambda}(l(s)) \psi_{s}\right)$ is the Fourier multiplier on $L^{2}\left(\boldsymbol{R}^{k}\right)$ corresponding to $e^{(i \lambda-\rho) \log l(s)}$ $\Delta(s) \mathscr{F} \psi\left(A d_{0}^{*}(l(s)) \xi+\xi(s)\right)$ where $\mathscr{F} \psi$ is the Fourier transform of ψ and $A d_{0}$ is defined by $A d(l(s) \gamma(t))=\gamma\left(A d_{0}(l(s)) t\right)$. Therefore, replacing \boldsymbol{R}^{m} with \boldsymbol{R}^{k}, we can develop the quite same argument on (A3)-(A8) and then, we can deduce an inversion formula for $\mathscr{\delta}(Q \backslash \bar{N})$. If we combine these two formulas for $\mathscr{S}(Q)$ and $\mathscr{(}(Q \backslash \bar{N})$, we can deduce the one for $\&(\bar{N})$.
4. Examples. We shall give some examples of $L(s)$ and $h(s)$ which satisfy (a) and (b) respectively.

$$
\begin{gathered}
(\mathrm{a} 1) L(s)^{-1}=x_{1} C_{1}(u)+x_{2} C_{2}(u)+\cdots+ \\
x_{m} C_{m}(u)+C_{0}(u)
\end{gathered}
$$

where $C_{0}(u)$ is a (m, m)-matrix. Then (a) is satisfied with $A(s)=I$.
(a2) $L(s)^{-1}=\exp \left(x_{1} C_{1}(u)+x_{2} C_{2}(u)+\cdots+\right.$ $\left.x_{m} C_{m}(u)+C_{0}(u)\right)$ and $A(s)=L(s)^{-1}$.
(a3)

$$
L(s)^{-1}=\operatorname{diag}\left(e^{\beta_{1}(s)}, e^{\beta_{2}(s)}, \ldots, e^{\beta_{m}(s)}\right) C_{0}(u),
$$ here $\beta_{j}(s)$ is the j-th entry of $B(u) x+b_{0}(u)$ where $B(u)=\left(b_{i j}(u)\right)$ is a (m, m)-matrix and $b_{0}(u) \in \boldsymbol{R}^{m}$. Then (a) is satisfied with $A(s)=$ $\operatorname{diag}\left(e^{\beta_{1}(s)}, \ldots, e^{\beta_{m}(s)}\right)$ and $C_{j}(u)=\operatorname{diag}\left(b_{1 j}(u)\right.$, $\left.b_{2 j}(u), \ldots, b_{m j}(u)\right) C_{0}(u)$.

(b1) $h(s)=h_{0}(u)$ and $d_{j}(u)=0$,
(b2) $h(s)=L(s)^{-1} b_{0}(u)$ and

$$
d_{j}(u)=C_{j}(u) b_{0}(u),
$$

(b3) $h(s)=D(u) x+b_{0}(u)$ provided $A(s)=I$.
Remark 4. Let U be a subgroup of $G L(m, \boldsymbol{R})$ (see (A3)) and put $\mathscr{D}=|\operatorname{det}(C(u) \otimes \xi-D(u))|$ (see (c)). (1) We define $L(s)$ by (a1) with $C_{j}(u)=$ $\xi_{j} u I$ and $C_{0}(u)=f u I\left(\xi_{j}, f \in \boldsymbol{R}\right)$, and $h(s)$ by (b3) with $D(u)=I$ and $b_{0}(u)=0$. Then $L(s)^{-1}$ $=(\langle\Xi, x\rangle+f) u\left(\Xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right)\right)$, $\mathscr{T}_{\omega^{\prime}}\left(U \times \boldsymbol{R}^{m}\right)=U \times \boldsymbol{R}^{m}$, and
$\mathscr{D}=|\operatorname{det}(\Xi \otimes u \xi-I)|=|1-\langle\Xi, u \xi\rangle|$.
(2) We suppose that there exists $v \in \boldsymbol{R}^{m}$ such that $v \otimes D(u)=C(u)$. Then

$$
\begin{aligned}
\mathscr{D} & =|\operatorname{det} D(u)||\operatorname{det}(v \otimes \xi-I)| \\
& =|\operatorname{det} D(u)| \mid 1-\langle v, \xi\rangle .
\end{aligned}
$$

In this case $v \otimes A(s) D(u)=A(s) C(u)$ and $v \otimes \nabla h(s)=\left(\frac{\partial L(s)^{-1}}{\partial x_{1}}, \ldots, \frac{\partial L(s)^{-1}}{\partial x_{m}}\right)$.
(3) Let $U=\{e\}$ and $S=\boldsymbol{R}^{m}$. We define $L(s)$ by (a1) and $h(s)$ by (b3) with $D=I$ and $b_{0}=0$. Then $L(s)^{-1}=C \otimes x+C_{0}, \mathscr{T}_{w^{\prime}}\left(\boldsymbol{R}^{m}\right)=\xi_{\omega^{\prime}}\left(\boldsymbol{R}^{m}\right)$
where $\quad \xi_{\omega^{\prime}}(x)=\left(C \otimes x+C_{0}\right)^{-1}\left(\omega^{\prime}+x\right)$, and $\mathscr{D}=|\operatorname{det}(C \otimes \xi-I)|$.

When $G=S L(n+2, \boldsymbol{R})(n \geq 1)$ and $\bar{N} \cong$ H_{n}, it is easy to construct the map $l: S \rightarrow M A$ for which $L(s)$ is of the above form. Then these examples (1)-(3) yield the inversion formulas (a)-(c) in [4, IV] respectively.

Remark 5. Let $S=\boldsymbol{R}^{m}$. We define $L(s)$ by (a3) with $C_{0}=I, B=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ ($a_{i} \neq 0 \in \boldsymbol{R}$) and $b_{0}=0$, and we let $h(s)=0$. Then (A4) is satisfied with $A(s)=L(s)^{-1}$ and C_{j} $=a_{j} E_{j j}$, (A6) with $\lambda=-\rho, \Delta(s) \equiv 1$, and $\Gamma \equiv$ 1. Especially, $\quad \mathscr{T}_{\omega^{\prime}}\left(\boldsymbol{R}^{m}\right)=\prod_{i=1}^{m} \operatorname{sgn}\left(\omega_{i}^{\prime}\right) \boldsymbol{R}_{+}=$ $D_{\mathrm{sgn} \omega^{\prime}}$ and $\mathscr{D}=\prod_{j=1}^{m}\left|a_{j} \xi_{j}\right|$. This is the case treated in [3, §5].

References

[1] Corwin, L. and Greenleaf, F. P.: Representations of Nilpotent Lie Groups and Their Applications. Part 1. Basic Theory and Examples, Cambridge studies in advanced mathematics, 18, Cambridge University Press, Cambridge (1990).
[2] Kawazoe, T.: Wavelet transform associated to an induced representation of $S L(n+2, R)$ (to appear in Ann. Inst. Henri Poincaré).
[3] Kawazoe, T.: Wavelet transforms associated to a principal series representation of semisimple Lie groups. I. Proc. Japan Acad., 71A, 154-157 (1995).
[4] Kalisa, C. and Torrésani, B.: N-dimensional affine Weyl-Heisenberg wavelets. Ann. Inst. Henri Poincaré, 59, 201-236 (1993).

