Wavelet Transforms Associated to a Principal Series Representation of Semisimple Lie Groups. I

By Takeshi KAWAZOE

Department of Mathematics, Keio University (Communicated by Kiyosi ITÔ, M. J. A., Sept. 12, 1995)

1. Introduction. Let G be a locally compact Lie group and π a continuous representation of G on a Hilbert space \mathcal{H} . Let \mathcal{H}_{∞} denote the space of C^{∞} -vectors in \mathcal{H} , endowed with a natural Sobolev-type topology, and $\mathcal{H}_{-\infty}$ the dual of \mathcal{H}_{∞} endowed with the strong topology. We denote the corresponding representation on $\mathcal{H}_{-\infty}$ by the same letter π . Let S be a subset of G and ds a measure on S. A vector $\psi \in \mathcal{H}_{-\infty}$ is said to be S-strongly admissible for π if there exists a positive constant $c_{S,\psi}$ such that

(1)
$$\int_{S} |\langle f, \pi(s)\psi \rangle_{\mathscr{H}}|^{2} ds = c_{S,\psi} ||f||_{\mathscr{H}}^{2}$$
for all $f \in \mathscr{H}_{\infty}$,

where $\langle \cdot, \cdot \rangle_{\mathscr{H}}$ and $\| \cdot \|_{\mathscr{H}}$ denote the inner product and the norm of \mathscr{H} respectively. We easily see that $\psi \in \mathscr{H}_{-\infty}$ is S-strongly admissible for π if and only if, as a functional on \mathscr{H}_{∞} ,

(2)
$$f = c_{s,\phi}^{-1} \int_{s} \langle f, \pi(s)\psi \rangle_{\mathscr{H}} \pi(s)\psi ds$$
for all $f \in \mathscr{H}_{\infty}$.

We call $\langle f, \pi(s)\psi \rangle$ the wavelet transform of f associated to (G, π, S, ϕ) in the sense that, by specializing (G, π, S, ψ) , the above formula yields a group theoretical interpretation of various well-known wavelet transforms. For example, we first let S = G, ds = dg, a Haar measure of G, and (π, \mathcal{H}) a square-integrable representation of G, that is, π is an irreducible unitary representation satisfying $0 < \int_{C} |\langle \phi, \phi \rangle$ $|\pi(g)\psi\rangle|^2 dg < \infty$ for all ϕ, ψ in \mathcal{H} . Then π is a discrete series of G and every $\phi \in \mathcal{H}$ is a G-strongly admissible vector for π (see [3]). The Gabor transform and the Grossmann-Morlet transform correspond to the Weyl-Heisenberg group and the one-dimensional affine group respectively (cf. [7, §3]). Next let H be a closed subgroup of G and π a discrete series of G/H.

Then there exists an *H*-invariant distribution vector $\psi \in \mathscr{H}_{-\infty}$ for which (2) holds by replacing *S* and *ds* with *G*/*H* and a *G*-invariant measure on *G*/*H* respectively (cf. [12]). We can treat this case in our scheme, because the integral over *G*/*H* can be regarded as the one over *S* = $\sigma_0(G/H)$ where $\sigma_0: G/H \to G$ is a flat section of the fiber bundle $G \to G/H$.

These considerations are based on the existence of the discrete series of G or G/H, so it seems to be difficult to unfold the same process in the case that G has no such representations. One approach to treat the case is to find a non flat Borel section $\sigma: G/H \rightarrow G$. In the case of the Poincaré group and the affine Weyl-Heisenberg group, Ali, Antoine, and Gazeau [1] and Kalisa and Torrésani [10] respectively find a non square-integrable reprepentation (π, \mathcal{H}) , a ψ in \mathcal{H} , and a non flat section σ such that (2) holds for π , ψ , and $S = \sigma(G/H)$. In this paper we shall investigate a transform associated to a principal series representation of noncompact semisimple Lie groups and we obtain a generalization of the Grossmann-Morlet transform and the Carderón identity. A transform associated to the analytic continuation of the holomorphic discrete series and its limit will be treated in the forthcoming paper [9].

2. Principal series representations. Let G be a noncompact connected semisimple Lie group with finite center and $g = t + a_0 + n_0$ an Iwasawa decomposition of the Lie algebra g of G. According to the process in [4, §6], we shall define a standard parabolic subalgebra $\mathfrak{p} = \mathfrak{m} + \mathfrak{a}$ $+ \mathfrak{n}$. Let Σ be the set of roots of $(\mathfrak{g}, \mathfrak{a}_0)$ positive for \mathfrak{n}_0 and Σ_0 the subset of Σ consisting of simple roots. For each $F \subset \Sigma_0$ we set $\mathfrak{a} = \mathfrak{a}_F =$ $\{H \in \mathfrak{a}_0; \alpha(H) = 0 \text{ for all } \alpha \in F\}$ and $\mathfrak{n} = \mathfrak{n}_F$ $= \sum_{\alpha \in \Sigma \setminus \Sigma_F} \mathfrak{g}_{\alpha}$ where \mathfrak{g}_{α} is the root space corresponding to α . Then the parabolic subalgebra \mathfrak{p} of g is given by $\mathfrak{p} = \mathfrak{m} + \mathfrak{a} + \mathfrak{n}$ where $Z_t(\mathfrak{a}) = \mathfrak{m}$

¹⁹⁹¹ Mathematics Subject Classification. Primary 22E30; Secondary 42C20.

+ a. The set of roots of $(\mathfrak{g}, \mathfrak{a})$ positive for \mathfrak{n} is given by $\Sigma(\mathfrak{a}) = \{\alpha^{\tilde{}}; \alpha \in \Sigma\}$ where $\alpha^{\tilde{}} = \alpha|_{\mathfrak{a}}$, and let $\rho = \sum_{\alpha \in \Sigma(\mathfrak{a})} \alpha/2$. We denote by K, A_0 , M_0, A , and N the analytic subgroups of G corresponding to $\mathfrak{k}, \mathfrak{a}_0, \mathfrak{m}, \mathfrak{a}$, and \mathfrak{n} respectively. The parabolic subgroup P of G corresponding to \mathfrak{p} is given by P = MAN where $M = Z_K(\mathfrak{a})M_0$. We denote by θ the Cartan involution of G and put $\overline{N} = \theta(N)$. Haar measures dg, dm, dn, and $d\overline{n}$ of G, M, N, and \overline{N} are respectively normalized as the following integral formula holds: for f $\in L^1(G)$

(3)
$$\int_{G} f(g) dg = \int \int \int \int \int_{\bar{N} \times M \times A \times N} f(\bar{n}man) e^{2\rho(\log a)} d\bar{n} dm dadn,$$

where da is the Lebesgue measure on A (see [5, §19]). For $\lambda \in \mathfrak{a}_{C}^{*}$, the dual space of the complexification of \mathfrak{a} , we define $1 \otimes e^{\lambda} \otimes 1(man) = (man)^{\lambda} = e^{\lambda(\log a)}$ and let $\pi_{\lambda} = \operatorname{Ind}_{P}^{C}(1 \otimes e^{\lambda} \otimes 1)$. A dense subspace of the representation space $H(\lambda)$ is

(4) {
$$f \in C(G)$$
; $f(gman) = e^{-(i\lambda + \rho)(\log a)} f(g)$
($g \in G$, $man \in MAN$)}

with norm $||f_{-}||^{2} = \int_{K} |f(k)|^{2} dk$. By restricting fto \bar{N} , we see that $H(\lambda)$ is identified with $L^{2}(\bar{N}, e^{-2\Im\lambda(H(\bar{n}))}d\bar{n})$ and the action of G is given by (5) $\pi_{\lambda}(g) f(\bar{n}) = e^{(i\lambda+\rho)\log a(g^{-1}\bar{n})} f(\bar{n}(g^{-1}\bar{n})),$ where $g = kma^{H(g)}n \in G = KMAN$ and $g = \bar{n}(g)ma(g)n \in \bar{N}MAN$. Then π_{λ} is unitary if and only if $\lambda \in \mathfrak{a}^{*}$ (see [6, §4]). Let $\mathscr{S}(\bar{N})$ be the Schwartz space on \bar{N} and $\mathscr{S}'(\bar{N})$ the dual space with respect to

$$\langle f, g \rangle_{L^2(\overline{N})} = \int_K f(k) \overline{g}(k) dk.$$

3. Plancherel formula for $L^2(\bar{N})$. General theory of the Plancherel formula on nilpotent Lie groups (cf. [2, 4.3.10]) yields that

(6)
$$\|\phi\|_{L^2(\bar{N})}^2 = \int_{U \cap V_T} \|\sigma_{\omega}(\phi)\|_{HS}^2 \mu(\omega) d\omega$$

for all $\phi \in L^2(\bar{N})$.

Here U is the set of generic coadjoint orbits, V_T a subspace of $\bar{\mathfrak{n}}^*$, σ_{ω} the irreducible unitary representation of \bar{N} corresponding to $\omega \in U$, and $\sigma_{\omega}(\phi)$ the operator defined by $\sigma_{\omega}(\phi) = \int_{\bar{N}} \phi(\bar{n}) \sigma_{\omega}(\bar{n}) d\bar{n}$. Moreover, $\|\cdot\|_{HS}$ is the Hilbert-Schmidt norm and $\mu(\omega) d\omega$ the Plancherel measure on $U \cap V_T$. Since U is Zariski open, we may replace $U \cap V_T$ in (6) by V_T or V'_T , the set of regular elements in V_T . We here note that (7) $\sigma_{\omega}(\operatorname{Ad}(s)\bar{n}) \sim \sigma_{\operatorname{Ad}(s^{-1})\omega}(\bar{n}) \quad (s \in MA),$ where $\operatorname{Ad}(s^{-1})\omega(\bar{n}) = \omega(\operatorname{Ad}(s)\bar{n}) \quad (\text{cf. [2, 2.1.3]})$ and $\sigma_{\omega}(\phi)$ is well-defined for $\phi \in \mathscr{S}'(\bar{N})$ as an operator on $\mathscr{S}(\bar{N}).$

4. Main theorem. Let S be a measurable subset of MA and ds a measure on S. We suppose that there exists $\psi \in \mathscr{S}'(\bar{N})$ satisfying for all $\omega \in V'_T$

(i)
$$\sigma_{\omega}(\psi)\sigma_{\omega}(\psi)^* = n_{\psi}(\omega)I$$
,
(ii) $0 < \int_{S} n_{\psi}(\operatorname{Ad}(s^{-1})\omega)ds = c_{S,\psi} < \infty$

where $n_{\phi}(\omega)$ is a real number, I is the identity operator, and $c_{s,\phi}$ is independent of ω .

Theorem 1. Let $\psi \in \mathscr{S}'(\bar{N})$ be as above and suppose $\lambda |_{s} = -i\rho |_{s}$. Then ψ is a $\bar{N}S$ -strongly admissible vector for π_{λ} , that is,

$$\begin{split} \int\!\!\!\int_{\overline{N}\times S} |\langle f, \pi_{\lambda}(\overline{n}s)\psi\rangle_{L^{2}(\overline{N})}|^{2}d\overline{n}ds &= c_{S,\phi} \,\|f\|_{L^{2}(\overline{N})}^{2} \\ & \quad \text{for all } f \in \mathcal{S}(\overline{N}). \end{split}$$

Proof. We first recall that, since $\lambda |_{s} = -i\rho |_{s}$, $\pi_{\lambda}(s)\psi(\bar{n}) = \psi(\operatorname{Ad}(s^{-1})\bar{n}s^{-1})$ $= \psi(\operatorname{Ad}(s^{-1})\bar{n})s^{2\rho}$.

Then, it follows from (i) and (7) that

(8) $n_{\pi_{\lambda}(s)\phi}(\omega) = n_{\phi}(\operatorname{Ad}(s^{-1})\omega).$ Therefore, (*i*), (*ii*), (6), and (8) yields that for $f \in \mathscr{S}(\bar{N})$

Similarly, we can deduce the following,

Theorem 2. Let $\psi \in \mathscr{S}'(\bar{N})$ be as above and suppose $\lambda \mid_{s} \equiv 0$. Then, ψ is a $S\bar{N}$ -strongly admissible vector for π_{λ} , that is,

Remark 3. The conclution in Theorem 1 is equivalent to the following identity:

$$f = c_{s,\phi}^{-1} \int_{S} f * (\pi_{\lambda}(s)\psi)^{\tilde{}} * \pi_{\lambda}(s)\psi ds$$

for all $f \in \mathscr{S}(\bar{N})$.

We may regard this identity as a generalization of the Carderón identity (cf. [11, p.16]).

5. Examples. We recall a basis realization of $\sigma_{\omega}(\omega \in V_{\tau}')$ (cf. [2, 4.1.1]). Let m be a polarizing subalgebra for all ω (we abuse m in p) and $\{X_1, \ldots, X_m, \ldots, X_n\}$ a weak Malcev basis for $\overline{\mathfrak{n}}$ passing through m where $n = \dim \overline{n}$ and m =dim m. If we put k = m - n and define $\gamma(t) =$ $\exp t_1 X_{m+1} \ldots \exp t_k X_n \text{ for } t = (t_1, \ldots, t_k) \in \mathbf{R}^k,$ then $\gamma: \mathbf{R}^k \to G$ is a cross-section for $M \setminus G$ $(M = \exp m)$, and the Lebesgue measure dt on \boldsymbol{R}^{k} corresponds to a G-invariant measure on $M \setminus G$. Then, σ_{ω} is realized on $L^2(\mathbf{R}^k)$ as $\sigma_{\omega}(\bar{n}) f(t) = e^{2\pi i \omega (X(\gamma(t)\bar{n}))} f(t(\gamma(t)\bar{n}))$ where $\bar{n} =$ $\exp X(\bar{n})\gamma(t(\bar{n})) \ (X(\bar{n}) \in \mathfrak{m}, \ t(\bar{n}) \in \mathbb{R}^k),$ and $\sigma_{\omega}(\phi)$ $(\phi \in \mathscr{S}'(\bar{N}))$ is the operator with the kernel given by $K_{\phi}(t', t) = \int_{M} \chi_{\omega}(m) \psi(\gamma(t')^{-1}m)$ $\gamma(t)$ dm where $\chi_{\omega}(\exp Y) = e^{2\pi i \omega(Y)}$ for $Y \in \mathfrak{m}$ (cf. [2, 4.2.2]). We here assume that

(A1) \mathfrak{m} is ideal and $\overline{\mathfrak{n}}/\mathfrak{m}$ is abelian.

Then,
$$K_{\phi}(t', t) = \int_{\mathfrak{m}} e^{2\pi i \omega (\operatorname{Ad}(\gamma(t'))Y)} \phi(\exp Y\gamma(t - t')) dY$$
. We now specialize $\phi \in \mathscr{S}'(\bar{N})$ by letting

 $\psi(\bar{n}) = \Psi(X(\bar{n})) \Xi(t(\bar{n})) \quad \text{where} \quad \Psi \in \mathscr{S}'(\mathbb{R}^m)$ and $\Xi \in \mathscr{S}'(\mathbb{R}^k)$ satisfy

(9)
$$|\hat{\Psi}(\operatorname{Ad}(\gamma(t))\omega)| = |\hat{\Psi}(\omega)| \text{ and } |\hat{\Xi}(t)| = 1$$

for all $t \in \mathbf{R}^k$

respectively. Since $K_{\phi}(t', t) = \hat{\Psi}(\operatorname{Ad}(\gamma(-t'))\omega)$ $\Xi(t-t'), \sigma_{\omega}(\phi)$ satisfies $\sigma_{\omega}(\phi) f(t') = \hat{\Psi}(\operatorname{Ad}(\gamma(-t'))\omega)\Xi^{-} * f(t')$ and hence, $n_{\phi}(\omega) = |\hat{\Psi}(\omega)|^2$ in (*i*). Next we identify V_T with \mathbf{R}^r by using coroots vectors. Then we assume that there exists a subgroup A_1 of A_0 such that dim $A_1 = r$ and

(A2)
$$da = \frac{dx}{|x|}$$

for
$$x = \operatorname{Ad}(a)\omega$$
 $(a \in A_1, \omega \in V_T)$,

where $|x| = \prod_{i=1}^{r} |x_i|$. Let \mathscr{E} denote the set of signatures $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_r)$ where $\varepsilon_i = \pm 1$ for $1 \leq i \leq r$, and D_{ε} the domain in \mathbf{R}^r defined by $D_{\varepsilon} = \{x \in \mathbf{R}^r; 0 < \varepsilon_i x_i < \infty (1 \leq i \leq r)\}$. Since $n_{\phi}(\omega) = |\hat{\Psi}(\omega)|^2$ and $\int_{A_1} n_{\phi}(\operatorname{Ad}(a)\omega) da = \int_{\operatorname{Dsgn}\omega} n_{\phi}(x) dx / |x|$ for $\omega \in V_T$, the condition (*ii*) for $S = A_1$ can be rewritten as

(10) $0 < \int_{D_{\varepsilon}} |\hat{\Psi}(x)|^2 \frac{dx}{|x|} = c_{\Psi} < \infty$ for all $\varepsilon \in \mathscr{E}$, where c_{Ψ} is independent of ε . Therefore, under (A1) and (A2) the conditions (*i*) and (*ii*) hold for $\psi = \Psi \Xi$ satisfying (10). For example, when (a) $G = SL(n + 2, \mathbb{R})$ $(n \ge 1)$, $\overline{N} = H_n$, the (2n + 1)-dimensional Heisenberg group, and $A_1 =$ {diag $(a, 1, \ldots, 1, a^{-1})$; $a \in \mathbb{R}_+$ }, and (b) G =

 $SL(4, \mathbf{R}), \bar{N} = N_4$, the group of lower triangular 4×4 matrices with 1's along the diagonal, and $A_1 = \{ \text{diag}(a, b, b^{-1}, a^{-1}) ; a, b \in \mathbf{R}_+ \}$, we can show (A1) and (A2) and moreover, we can find Ψ and Ξ satisfying (9) and (10) (see [8]).

Remark 4. For a nonempty subset \mathscr{L} of \mathscr{E} , we define $\mathscr{S}^{\mathscr{L}}(\bar{N}) = \{f \in \mathscr{S}(\bar{N}) ; \sigma_{\omega}(f) \equiv 0 \text{ if } sgn\omega \notin \mathscr{L}\}$ and instead of (10) we suppose that $\mathscr{\Psi}$ in (9) satisfies

(11)
$$\int_{\mathcal{D}_{\varepsilon}} |\hat{\Psi}(x)|^2 \frac{dx}{|x|} = \begin{cases} c_{\mathscr{L},\Psi} & \text{if } \varepsilon \in \mathscr{L} \\ 0 & \text{otherwise,} \end{cases}$$

where $c_{\mathscr{L},\Psi}$ is nonzero finite and independent of $\varepsilon \in \mathscr{L}$. Then Theorem 1 and Theorem 2 respectively hold for $\mathscr{S}^{\mathscr{L}}(\bar{N})$.

References

- Ali, S. T., Antoine, J. -P., and Gazeau, J. -P.: Square integrability of group representations on homogeneous spaces. I. Reproducing triples and frames. II. Coherent and quasi-coherent states. The case of Poincaré group, Ann. Inst. Henri Poincaré, 55, 829-855, 857-890 (1991).
- [2] Corwin, L. and Greenleaf, F. P.: Representations of Nilpotent Lie Groups and Their Applications. Part 1. Basic Theory and Examples, Cambridge studies in advanced mathematics, 18, Cambridge University Press, Cambridge (1990).
- [3] Duflo, M. and Moore, C. C.: On the regular representation of a nonunimodular locally compact group. J. Funct. Anal., 21, 209-243 (1976).
- [4] Harish-Chandra: Harmonic analysis on real reductive groups. I. J. Funct. Anal., 19, 104-204 (1975).
- [5] Harish-Chandra: Harmonic analysis on real reductive groups. II. Inv. Math., 36, 1-55 (1976).
- [6] Harish-Chandra: Harmonic analysis on real reductive groups. III. Ann. of Math., 104, 127-201 (1976).
- [7] Heil, C. E. and Walnut, D. F.: Continuous and discrete wavelet transforms. SIAM Review, 31, 628-666 (1989).
- [8] Kawazoe, T.: Wavelet transform associated to an induced representation of SL(n + 2, R) (to appear in Ann. Inst. Henri Poincaré).
- [9] Kawazoe, T.: A transform associated to the an-

alytic continuation of the holomorphic discrete series of a semisimple Lie group, manuscript.

- [10] Kalisa, C. and Torrésani, B.: N-dimensional affine Weyl-Heisenberg wavelets. Ann. Inst. Henri Poincaré, 59, 201-236 (1993).
- [11] Meyer, Y.: Ondelettes et Opérateurs. I. Hermann,

Paris (1990).

[12] van Dijk, G. and Poel, M.: The Plancherel formula for the pseudo-Riemannian space SL(n, R)/GL(n-1, R). Comp. Math., 58, 371-397 (1986).