Wavelet Transforms Associated to a Principal Series Representation of Semisimple Lie Groups. I

By Takeshi KAWAZOE
Department of Mathematics, Keio University
(Communicated by Kiyosi ITô, M. J. A., Sept. 12, 1995)

1. Introduction. Let G be a locally compact Lie group and π a continuous representation of G on a Hilbert space \mathscr{H}. Let \mathscr{H}_{∞} denote the space of C^{∞}-vectors in \mathscr{H}, endowed with a natural Sobolev-type topology, and $\mathscr{H}_{-\infty}$ the dual of \mathscr{H}_{∞} endowed with the strong topology. We denote the corresponding representation on $\mathscr{H}_{-\infty}$ by the same letter π. Let S be a subset of G and $d s$ a measure on S. A vector $\psi \in \mathscr{H}_{-\infty}$ is said to be S-strongly admissible for π if there exists a positive constant $c_{S, \psi}$ such that

$$
\begin{gather*}
\int_{S}\left|\langle f, \pi(s) \phi\rangle_{\mathscr{H}}\right|^{2} d s=c_{S, \psi}\|f\|_{\mathscr{H}}^{2} \tag{1}\\
\text { for all } f \in \mathscr{H}_{\infty}
\end{gather*}
$$

where $\langle\cdot, \cdot\rangle_{\mathscr{H}}$ and $\|\cdot\|_{\mathscr{H}}$ denote the inner product and the norm of \mathscr{H} respectively. We easily see that $\psi \in \mathscr{H}_{-\infty}$ is S-strongly admissible for π if and only if, as a functional on \mathscr{H}_{∞},

$$
\begin{equation*}
f=c_{S, \psi}^{-1} \int_{S}\langle f, \pi(s) \psi\rangle_{\mathscr{H}} \pi(s) \psi d s \tag{2}
\end{equation*}
$$

for all $f \in \mathscr{H}_{\infty}$.
We call $\langle f, \pi(s) \phi\rangle$ the wavelet transform of f associated to (G, π, S, ψ) in the sense that, by specializing (G, π, S, ψ), the above formula yields a group theoretical interpretation of various well-known wavelet transforms. For example, we first let $S=G, d s=d g$, a Haar measure of G, and (π, \mathscr{H}) a square-integrable representation of G, that is, π is an irreducible unitary representation satisfying $0<\int_{G} \mid\langle\phi$, $\pi(g) \phi\rangle\left.\right|^{2} d g<\infty$ for all ϕ, ψ in \mathscr{H}. Then π is a discrete series of G and every $\psi \in \mathscr{H}$ is a G-strongly admissible vector for π (see [3]). The Gabor transform and the Grossmann-Morlet transform correspond to the Weyl-Heisenberg group and the one-dimensional affine group respectively (cf. [7, §3]). Next let H be a closed subgroup of G and π a discrete series of G / H.

[^0]Then there exists an H-invariant distribution vector $\psi \in \mathscr{H}_{-\infty}$ for which (2) holds by replacing S and $d s$ with G / H and a G-invariant measure on G / H respectively (cf. [12]). We can treat this case in our scheme, because the integral over G / H can be regarded as the one over $S=$ $\sigma_{0}(G / H)$ where $\sigma_{0}: G / H \rightarrow G$ is a flat section of the fiber bundle $G \rightarrow G / H$.

These considerations are based on the existence of the discrete series of G or G / H, so it seems to be difficult to unfold the same process in the case that G has no such representations. One approach to treat the case is to find a non flat Borel section $\sigma: G / H \rightarrow G$. In the case of the Poincare group and the affine WeylHeisenberg group, Ali, Antoine, and Gazeau [1] and Kalisa and Torrésani [10] respectively find a non square-integrable reprepentation (π, \mathscr{H}), a ψ in \mathscr{H}, and a non flat section σ such that (2) holds for π, ψ, and $S=\sigma(G / H)$. In this paper we shall investigate a transform associated to a principal series representation of noncompact semisimple Lie groups and we obtain a generalization of the Grossmann-Morlet transform and the Carderon identity. A transform associated to the analytic continuation of the holomorphic discrete series and its limit will be treated in the forthcoming paper [9].
2. Principal series representations. Let G be a noncompact connected semisimple Lie group with finite center and $\mathfrak{g}=\mathfrak{f}+\mathfrak{a}_{0}+\mathfrak{n}_{0}$ an Iwasawa decomposition of the Lie algebra \mathfrak{g} of G. According to the process in $[4, \S 6]$, we shall define a standard parabolic subalgebra $\mathfrak{p}=m+\mathfrak{a}$ $+\mathfrak{n}$. Let \sum be the set of roots of $\left(\mathfrak{g}, \mathfrak{a}_{0}\right)$ positive for \mathfrak{n}_{0} and \sum_{0} the subset of \sum consisting of simple roots. For each $F \subset \sum_{0}$ we set $\mathfrak{a}=\mathfrak{a}_{F}=$ $\left\{H \in \mathfrak{a}_{0} ; \alpha(H)=0\right.$ for all $\left.\alpha \in F\right\}$ and $\mathfrak{n}=\mathfrak{n}_{F}$ $=\sum_{\alpha \in \Sigma \backslash \Sigma_{F}} g_{\alpha}$ where g_{α} is the root space corresponding to α. Then the parabolic subalgebra \mathfrak{p} of \mathfrak{g} is given by $\mathfrak{p}=\mathfrak{m}+\mathfrak{a}+\mathfrak{n}$ where $Z_{\mathfrak{p}}(\mathfrak{a})=\mathfrak{m}$
$+\mathfrak{a}$. The set of roots of ($\mathfrak{g}, \mathfrak{a}$) positive for \mathfrak{n} is given by $\sum(\mathfrak{a})=\left\{\alpha^{\sim} ; \alpha \in \sum\right\}$ where $\alpha^{\sim}=\left.\alpha\right|_{\mathfrak{a}}$, and let $\rho=\sum_{\alpha \in \Sigma(\mathfrak{a})} \alpha / 2$. We denote by K, A_{0}, M_{0}, A, and N the analytic subgroups of G corresponding to $\mathfrak{f}, \mathfrak{a}_{0}, \mathfrak{m}, \mathfrak{a}$, and \mathfrak{n} respectively. The parabolic subgroup P of G corresponding to \mathfrak{p} is given by $P=M A N$ where $M=Z_{K}(\mathfrak{a}) M_{0}$. We denote by θ the Cartan involution of G and put $\bar{N}=\theta(N)$. Haar measures $d g, d m, d n$, and $d \bar{n}$ of G, M, N, and \bar{N} are respectively normalized as the following integral formula holds: for f $\in L^{1}(G)$

$$
\begin{equation*}
\int_{G} f(g) d g=\iiint_{e^{2 \rho(\log a)} d \bar{n} d m d a d n,} \int_{\bar{N} \times M \times A \times N} f(\bar{n} m a n) \tag{3}
\end{equation*}
$$

where $d a$ is the Lebesgue measure on A (see [5, $\S 19]$). For $\lambda \in \mathfrak{a}_{c}^{*}$, the dual space of the complexification of \mathfrak{a}, we define $1 \otimes e^{\lambda} \otimes 1($ man $)=$ $(\text { man })^{\lambda}=e^{\lambda(\log a)}$ and let $\pi_{\lambda}=\operatorname{Ind}_{p}^{G}\left(1 \otimes e^{\lambda} \otimes 1\right)$. A dense subspace of the representation space $H(\lambda)$ is
(4) $\left\{f \in C(G) ; f(\right.$ gman $)=e^{-(i \lambda+\rho)(\log a)} f(g)$

$$
(g \in G, \text { man } \in M A N)\}
$$

with norm $\|f\|^{2}=\int_{K}|f(k)|^{2} d k$. By restricting f to \bar{N}, we see that $H(\lambda)$ is identified with $L^{2}(\bar{N}$, $\left.e^{-2 \mathfrak{F} \lambda(H(\bar{n}))} d \bar{n}\right)$ and the action of G is given by
(5) $\quad \pi_{\lambda}(g) f(\bar{n})=e^{(i \lambda+\rho) \log a\left(g^{-1} \bar{n}\right)} f\left(\bar{n}\left(g^{-1} \bar{n}\right)\right)$,
where $g=k m a^{H(g)} n \in G=K M A N$ and $g=$ $\bar{n}(g) m a(g) n \in \bar{N} M A N$. Then π_{λ} is unitary if and only if $\lambda \in a^{*}$ (see [6, §4]). Let $\mathcal{S}(\bar{N})$ be the Schwartz space on \bar{N} and $\delta^{\prime}(\bar{N})$ the dual space with respect to

$$
\langle f, g\rangle_{L^{2}(\bar{N})}=\int_{K} f(k) \bar{g}(k) d k
$$

3. Plancherel formula for $L^{2}(\bar{N})$. General theory of the Plancherel formula on nilpotent Lie groups (cf. [2, 4.3.10]) yields that

$$
\begin{gather*}
\|\phi\|_{L^{2}(\bar{N})}^{2}=\int_{U \cap V_{T}}\left\|\sigma_{\omega}(\phi)\right\|_{H S}^{2} \mu(\omega) d \omega \tag{6}\\
\text { for all } \phi \in L^{2}(\bar{N})
\end{gather*}
$$

Here U is the set of generic coadjoint orbits, V_{T} a subspace of $\overline{\mathfrak{n}}^{*}, \sigma_{\omega}$ the irreducible unitary representation of \bar{N} corresponding to $\omega \in U$, and $\sigma_{\omega}(\phi)$ the operator defined by $\sigma_{\omega}(\phi)=\int_{\bar{N}}$ $\phi(\bar{n}) \sigma_{\omega}(\bar{n}) d \bar{n}$. Moreover, $\|\cdot\|_{H S}$ is the HilbertSchmidt norm and $\mu(\omega) d \omega$ the Plancherel measure on $U \cap V_{T}$. Since U is Zariski open, we may replace $U \cap V_{T}$ in (6) by V_{T} or V_{T}^{\prime}, the set
of regular elements in V_{T}. We here note that
(7) $\quad \sigma_{\omega}(\operatorname{Ad}(s) \bar{n}) \sim \sigma_{\operatorname{Ad}\left(s^{-1}\right) \omega}(\bar{n}) \quad(s \in M A)$,
where $\operatorname{Ad}\left(s^{-1}\right) \omega(\bar{n})=\omega(\operatorname{Ad}(s) \bar{n})(c \mathrm{cf} .[2,2.1 .3])$ and $\sigma_{\omega}(\psi)$ is well-defined for $\psi \in \delta^{\prime}(\bar{N})$ as an operator on $\mathscr{\mathscr { N }}(\bar{N})$.
4. Main theorem. Let S be a measurable subset of $M A$ and $d s$ a measure on S. We suppose that there exists $\psi \in \delta^{\prime}(\bar{N})$ satisfying for all $\omega \in V_{T}^{\prime}$
(i) $\sigma_{\omega}(\psi) \sigma_{\omega}(\psi)^{*}=n_{\psi}(\omega) I$,
(ii) $0<\int_{S} n_{\psi}\left(\operatorname{Ad}\left(s^{-1}\right) \omega\right) d s=c_{S, \psi}<\infty$
where $n_{\psi}(\omega)$ is a real number, I is the identity operator, and $c_{S, \psi}$ is independent of ω.

Theorem 1. Let $\psi \in \mathscr{S}^{\prime}(\bar{N})$ be as above and suppose $\left.\lambda\right|_{S}=-\left.i \rho\right|_{S}$. Then ψ is a $\bar{N} S$-strongly admissible vector for π_{λ}, that is,
$\iint_{\bar{N} \times S}\left|\left\langle f, \pi_{\lambda}(\bar{n} s) \phi\right\rangle_{L^{2}(\bar{N})}\right|^{2} d \bar{n} d s=c_{S, \psi}\|f\|_{L^{2}(\bar{N})}^{2}$

$$
\text { for all } f \in \mathscr{S}(\bar{N})
$$

Proof. We first recall that, since $\left.\lambda\right|_{S}=-\left.i \rho\right|_{S}$,

$$
\begin{aligned}
\pi_{\lambda}(s) \psi(\bar{n}) & =\phi\left(\operatorname{Ad}\left(s^{-1}\right) \bar{n} s^{-1}\right) \\
& =\psi\left(\operatorname{Ad}\left(s^{-1}\right) \bar{n}\right) s^{2 \rho}
\end{aligned}
$$

Then, it follows from (i) and (7) that
(8)

$$
n_{\pi_{\lambda}(s) \psi}(\omega)=n_{\psi}\left(\operatorname{Ad}\left(s^{-1}\right) \omega\right)
$$

Therefore, (i), (ii), (6), and (8) yields that for $f \in$ $\otimes(\bar{N})$

$$
\begin{aligned}
& \iint_{\bar{N} \times S}\left|\left\langle f, \pi_{\lambda}(\bar{n} s) \phi\right\rangle_{L^{2}(\bar{N})}\right|^{2} d \bar{n} d s \\
= & \iint_{\bar{N} \times S}\left|f *\left(\pi_{\lambda}(s) \phi\right)^{\sim}(\bar{n})\right|^{2} d \bar{n} d s
\end{aligned}
$$

$$
\left(\psi^{\sim}(\bar{n})=\bar{\psi}\left(\bar{n}^{-1}\right)\right)
$$

$=\int_{S} \int_{V_{T}^{\prime}}\left\|\sigma_{\omega}\left(f *\left(\pi_{\lambda}(s) \phi\right)^{\sim}\right)\right\|_{H S}^{2} \mu(\omega) d \omega d s$
$=\int_{V_{T}^{\prime}} \operatorname{Tr}\left(\sigma_{\omega}(f) \cdot \int_{S} \sigma_{\omega}\left(\pi_{\lambda}(s) \psi\right)^{*} \sigma_{\omega}\left(\pi_{\lambda}(s) \psi\right) d s\right.$. $\left.\sigma_{\omega}(f)^{*}\right) \mu(\omega) d \omega$
$=c_{S, \psi} \int_{S}\left\|\sigma_{\omega}(f)\right\|_{H S}^{2} \mu(\omega) d \omega$
$=c_{S, \psi}\|f\|_{L^{2}(\bar{N})}^{2}$.
Similarly, we can deduce the following,
Theorem 2. Let $\psi \in \mathscr{\delta}^{\prime}(\bar{N})$ be as above and suppose $\left.\lambda\right|_{S} \equiv 0$. Then, ψ is a $S \bar{N}$-strongly admissible vector for π_{λ}, that is,

$$
\begin{aligned}
& \iint_{S \times \bar{N}}\left|\left\langle f, \pi_{\lambda}(s \bar{n}) \phi\right\rangle_{L^{2}(\bar{N})}\right|^{2} d s d \bar{n}=c_{S, \varphi}\|f\|_{L^{2}(\bar{N})}^{2} \\
& \text { for all } f \in \mathscr{S}(\bar{N})
\end{aligned}
$$

Remark 3. The conclution in Theorem 1 is equivalent to the following identity:

$$
f=c_{S, \psi}^{-1} \int_{S} f *\left(\pi_{\lambda}(s) \phi\right)^{\sim} * \pi_{\lambda}(s) \phi d s
$$

We may regard this identity as a generalization of the Carderón identity (cf. [11, p.16]).
5. Examples. We recall a basis realization of $\sigma_{\omega}\left(\omega \in V_{T}^{\prime}\right)(c f .[2,4.1 .1])$. Let \mathfrak{m} be a polarizing subalgebra for all ω (we abuse \mathfrak{m} in \mathfrak{p}) and $\left\{X_{1}, \ldots, X_{m}, \ldots, X_{n}\right\}$ a weak Malcev basis for \bar{n} passing through \mathfrak{m} where $n=\operatorname{dim} \overline{\mathfrak{n}}$ and $m=$ $\operatorname{dim} m$. If we put $k=m-n$ and define $\gamma(t)=$ $\exp t_{1} X_{m+1} \ldots \exp t_{k} X_{n}$ for $t=\left(t_{1}, \ldots, t_{k}\right) \in \boldsymbol{R}^{k}$, then $\gamma: \boldsymbol{R}^{k} \rightarrow G$ is a cross-section for $M \backslash G$ ($M=\exp \mathfrak{m}$), and the Lebesgue measure $d t$ on \boldsymbol{R}^{k} corresponds to a G-invariant measure on $M \backslash G$. Then, σ_{ω} is realized on $L^{2}\left(\boldsymbol{R}^{k}\right)$ as $\sigma_{\omega}(\bar{n}) f(t)=e^{2 \pi i \omega(X(\gamma(t) \bar{n}))} f(t(\gamma(t) \bar{n}))$ where $\bar{n}=$ $\exp X(\bar{n}) \gamma(t(\bar{n}))\left(X(\bar{n}) \in \mathfrak{m}, t(\bar{n}) \in \boldsymbol{R}^{k}\right)$, and $\sigma_{\omega}(\psi)\left(\psi \in \mathscr{S}^{\prime}(\bar{N})\right)$ is the operator with the kernel given by $K_{\psi}\left(t^{\prime}, t\right)=\int_{M} \chi_{\omega}(m) \phi\left(\gamma\left(t^{\prime}\right)^{-1} m\right.$ $\gamma(t)) d m$ where $\chi_{\omega}(\exp Y)=e^{2 \pi i \omega(Y)}$ for $Y \in \mathfrak{m}$ (cf. [2, 4.2.2]). We here assume that
(A1) m is ideal and $\overline{\mathrm{n}} / \mathrm{m}$ is abelian.
Then, $K_{\psi}\left(t^{\prime}, t\right)=\int_{\mathfrak{m}} e^{2 \pi i \omega\left(\operatorname{Ad}\left(\gamma\left(t^{\prime}\right)\right) Y\right)} \varphi(\exp Y \gamma(t-$ $\left.\left.t^{\prime}\right)\right) d Y$. We now specialize $\psi \in \delta^{\prime}(\bar{N})$ by letting $\phi(\bar{n})=\Psi(X(\bar{n})) \Xi(t(\bar{n})) \quad$ where $\quad \Psi \in \mathscr{S}^{\prime}\left(\boldsymbol{R}^{m}\right)$ and $\boldsymbol{\Xi} \in \mathscr{S}^{\prime}\left(\boldsymbol{R}^{k}\right)$ satisfy
(9) $|\hat{\Psi}(\operatorname{Ad}(\gamma(t)) \omega)|=|\hat{\Psi}(\omega)|$ and $|\hat{\boldsymbol{\Xi}}(t)|=1$ for all $t \in \boldsymbol{R}^{k}$
respectively. Since $K_{\psi}\left(t^{\prime}, t\right)=\hat{\Psi}\left(\operatorname{Ad}\left(\gamma\left(-t^{\prime}\right)\right) \omega\right)$ $\Xi\left(t-t^{\prime}\right), \sigma_{\omega}(\psi)$ satisfies $\sigma_{\omega}(\psi) f\left(t^{\prime}\right)=\hat{\Psi}(\operatorname{Ad}$ $\left.\left(\gamma\left(-t^{\prime}\right)\right) \omega\right) \Xi^{\sim} * f\left(t^{\prime}\right)$ and hence, $n_{\psi}(\omega)=|\hat{\Psi}(\omega)|^{2}$ in (i). Next we identify V_{T} with \boldsymbol{R}^{r} by using coroots vectors. Then we assume that there exists a subgroup A_{1} of A_{0} such that $\operatorname{dim} A_{1}=r$ and

$$
\text { (A2) } d a=\frac{d x}{|x|}
$$

for $x=\operatorname{Ad}(a) \omega\left(a \in A_{1}, \omega \in V_{T}\right)$,
where $|x|=\prod_{i=1}^{r}\left|x_{i}\right|$. Let \mathscr{E} denote the set of signatures $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right)$ where $\varepsilon_{i}= \pm 1$ for $1 \leq i \leq r$, and D_{ε} the domain in \boldsymbol{R}^{r} defined by $D_{\varepsilon}=\left\{x \in \boldsymbol{R}^{r} ; 0<\varepsilon_{i} x_{i}<\infty(1 \leq i \leq r)\right\}$. Since $n_{\psi}(\omega)=|\hat{\Psi}(\omega)|^{2}$ and $\int_{A_{1}} n_{\psi}(\operatorname{Ad}(a) \omega) d a=\int_{\text {Dsgn } \omega}$ $n_{\psi}(x) d x /|x|$ for $\omega \in V_{T}^{\prime}$, the condition (ii) for S $=A_{1}$ can be rewritten as
(10) $0<\int_{D_{\varepsilon}}|\hat{\Psi}(x)|^{2} \frac{d x}{|x|}=c_{\Psi}<\infty$ for all $\varepsilon \in \mathscr{E}$, where c_{y} is independent of ε. Therefore, under (A1) and (A2) the conditions (i) and (ii) hold for $\psi=\Psi \Xi$ satisfying (10). For example, when (a) $G=S L(n+2, \boldsymbol{R})(n \geq 1), \bar{N}=H_{n}$, the $(2 n+$ 1)-dimensional Heisenberg group, and $A_{1}=$ $\left\{\operatorname{diag}\left(a, 1, \ldots, 1, a^{-1}\right) ; a \in \boldsymbol{R}_{+}\right\}$, and (b) $G=$ $S L(4, \boldsymbol{R}), \bar{N}=N_{4}$, the group of lower triangular 4×4 matrices with 1 's along the diagonal, and $A_{1}=\left\{\operatorname{diag}\left(a, b, b^{-1}, a^{-1}\right) ; a, b \in \boldsymbol{R}_{+}\right\}$, we can show (A1) and (A2) and moreover, we can find Ψ and Ξ satisfying (9) and (10) (see [8]).

Remark 4. For a nonempty subset \mathscr{L} of \mathscr{E}, we define $\mathscr{S}^{\mathscr{L}}(\bar{N})=\{f \in \mathscr{(} \bar{N}) ; \sigma_{\omega}(f) \equiv 0$ if $\operatorname{sgn} \omega \notin \mathscr{L}\}$ and instead of (10) we suppose that Ψ in (9) satisfies

$$
\int_{D_{\varepsilon}}|\hat{\Psi}(x)|^{2} \frac{d x}{|x|}= \begin{cases}c_{\mathscr{L}, \Psi} & \text { if } \varepsilon \in \mathscr{L} \tag{11}\\ 0 & \text { otherwise }\end{cases}
$$

where $c_{\mathscr{L}, \mathscr{\Psi}}$ is nonzero finite and independent of $\varepsilon \in \mathscr{L}$. Then Theorem 1 and Theorem 2 respectively hold for $\mathscr{S}^{\mathscr{L}}(\bar{N})$.

References

[1] Ali, S. T., Antoine, J. -P., and Gazeau, J. -P.: Square integrability of group representations on homogeneous spaces. I. Reproducing triples and frames. II. Coherent and quasi-coherent states. The case of Poincaré group, Ann. Inst. Henri Poincaré, 55, 829-855, 857-890 (1991).
[2] Corwin, L. and Greenleaf, F. P.: Representations of Nilpotent Lie Groups and Their Applications. Part 1. Basic Theory and Examples, Cambridge studies in advanced mathematics, 18, Cambridge University Press, Cambridge (1990).
[3] Duflo, M. and Moore, C. C.: On the regular representation of a nonunimodular locally compact group. J. Funct. Anal., 21, 209-243 (1976).
[4] Harish-Chandra: Harmonic analysis on real reductive groups. I. J. Funct. Anal., 19, 104-204 (1975).
[5] Harish-Chandra: Harmonic analysis on real reductive groups. II. Inv. Math., 36, 1-55 (1976).
[6] Harish-Chandra: Harmonic analysis on real reductive groups. III. Ann. of Math., 104, 127-201 (1976).
[7] Heil, C. E. and Walnut, D. F.: Continuous and discrete wavelet transforms. SIAM Review, 31, 628-666 (1989).
[8] Kawazoe, T.: Wavelet transform associated to an induced representation of $S L(n+2, R)$ (to appear in Ann. Inst. Henri Poincaré).
[9] Kawazoe, T.: A transform associated to the an-
alytic continuation of the holomorphic discrete series of a semisimple Lie group, manuscript.
[10] Kalisa, C. and Torrésani, B.: N-dimensional affine Weyl-Heisenberg wavelets. Ann. Inst. Henri Poincaré, 59, 201-236 (1993).
[11] Meyer, Y.: Ondelettes et Opérateurs. I. Hermann,

Paris (1990).
[12] van Dijk, G. and Poel, M.: The Plancherel formula for the pseudo-Riemannian space $S L(n$, $R) / G L(n-1, R)$. Comp. Math., 58, 371-397 (1986).

[^0]: 1991 Mathematics Subject Classification. Primary 22E30; Secondary 42C20.

